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These notes are designed to help students in preparing for STEP 3. They cover the “bold and
italic” sections of the STEP 3 specification which are not covered in the A-level single Mathematics
specifications, or A-level Further Maths Common Core. Many of these topics will be covered in
the optional A Level Further Mathematics modules.

There are more notes on the various sections of the specification in the STEP 3 modules.
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Independent Random Variables

Two events are independent if the occurrence (or not) of one event, A, has no affect on the proba-
bility that another event, B, will occur. For example, getting a head on a coin will have no affect
on the probability that you get a six on a dice.

Getting an even number on a dice and getting a prime number on the same roll of that dice are
not independent as if you get an even number the probability that it is prime is 1

3 but if you get
an odd number the probability that it is prime is 2

3 . Another example of two events which are not
independent is whether or not it rains in Cambridge on two consecutive days.

Events A and B are independent iff:

P(A ∩B) = P(A)× P(B)

Two random variables are independent if the outcome of one has no affect on the outcome of the
other. More formally:

• Two discrete random variables X and Y are independent if the events X = x and Y = y are
independent for all possible x and y.

• Two continuous random variables X and Y are independent if the events X 6 x and Y 6 y
are independent for all possible x and y.1

You do not need to know these formal conditions, an informal understanding is enough.

Algebra of Expectation

You are expected to know, and use, the following:

• E(aX + bY + c) = aE(X) + bE(Y ) + c

• Var(X) = E(X2)− [E(X)]2

• Var(aX + b) = a2Var(X)

• and for independent random variables we have Var(aX ± bY ) = a2Var(X) + b2Var(Y )

See the Appendix for some derivations of these.

1For a continuous distribution the probability that X is exactly equal to x is zero. Hence P(X = x) and P(Y = y)
are both equal to 0 and so are (trivially and fairly uselessly) independent.
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Example: 2005 STEP 3 Q12

12 Five independent timers time a runner as she runs four laps of a track. Four of the
timers measure the individual lap times, the results of the measurements being the
random variables T1 to T4, each of which has variance σ2 and expectation equal to
the true time for the lap. The fifth timer measures the total time for the race, the
result of the measurement being the random variable T which has variance σ2 and
expectation equal to the true race time (which is equal to the sum of the four true lap
times).

Find a random variable X of the form aT + b(T1 + T2 + T3 + T4), where a and b are
constants independent of the true lap times, with the two properties:

(1) whatever the true lap times, the expectation of X is equal to the true race time;

(2) the variance of X is as small as possible.

Find also a random variable Y of the form cT + d(T1 + T2 + T3 + T4), where c and d
are constants independent of the true lap times, with the property that, whatever the
true lap times, the expectation of Y 2 is equal to σ2.

In one particular race, T takes the value 220 seconds and (T1 + T2 + T3 + T4) takes
the value 220.5 seconds. Use the random variables X and Y to estimate an interval
in which the true race time lies.

Solution:

Let the true times of the laps be t1, t2, t3, t4 and the true race time be t, so that we have E(T1) = t1
etc. We also have:

t1 + t2 + t3 + t4 = t (*)

This is because t1 is the true time of lap 1 etc.

Let X = aT + b(T1 + T2 + T3 + T4), so we have:

E(X) = at+ b(t1 + t2 + t3 + t4)

Var(X) = a2σ2 + b2 × 4σ2

The given conditions tell us that we want E(X) = t, and that we want to minimise
Var(X) = σ2(a2 + 4b2).

The first condition gives us at+ b(t1 + t2 + t3 + t4) = t =⇒ at+ bt = t, using (*), and so we have
a+ b = 1. Substituting this into the variance we have:

Var(X) = σ2
(
a2 + 4(1− a)2

)
= σ2

(
5a2 − 8a+ 4

)
= σ2

(
5
(
a− 4

5

)2 − 5× 16
25 + 4

)
= σ2

(
5
(
a− 4

5

)2
+ 4

5

)

STEP 3 Probability Notes 3

https://maths.org/step/


maths.org/step

Therefore to minimise the variance take a = 4
5 which means that b = 1

5 .

For Y we have E(Y ) = ct+ dt and Var(Y ) = σ2(c2 + 4d2). We also know that
Var(Y ) = E(Y 2)− [E(Y )]2. If E(Y 2) = σ2 then we have:

σ2(c2 + 4d2) = σ2 − [(c+ d)t]2

Since we want this to hold whatever the true lap times are, we want it to be true for all values of t.
Hence we need c+d = 0 and c2 + 4d2 = 1. This means that 5c2 = 1 and so c = ± 1√

5
and d = ∓ 1√

5
.

For the particular race we have:

x =
4

5
× 220 +

1

5
× 220.5

= 220.1

y = ±
(

1√
5
× 220− 1√

5
× 220.5

)
= ∓0.5√

5

So our estimate of the race time is 220.1 seconds and the estimate of the standard deviation of one
of the times is σ = 1

2
√
5
.

The variance of X is equal to σ2 × 4
5 , and so we estimate this as 1

4×5 ×
4
5 = 1

25 . Therefore our

estimate for the standard deviation of X is 1
5 .

One way estimate for an interval in which the mean lies is to take an interval two standard deviations
either side of the mean (for an approximately normal distribution this would give a confidence
interval of 95%). Therefore our interval would be:

220.1± 2× 1

5
= 220.1± 0.4

It wouldn’t matter much if you used 3 standard deviations, or even one.
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Cumulative distribution functions

The cumulative distribution function F(x) is defined by:

F(x) = P(X 6 x) =

∫ x

−∞
f(t) dt

f(x) is the probability density function of X.

To find the probability density function of Y = X2, start by considering the cumulative distribution
function.

FY (y) = P(Y 6 y)

= P(X2 6 y)

= P(−√y 6 X 6
√
y)

= P(X 6
√
y)− P(X 6 −√y)

= F(
√
y)− F(−√y)

To find the p.d.f. of Y , differentiate the c.d.f. of Y .

Example 2014 STEP 3 Question 12

The random variable X has probability density function f(x) (which you may assume is
differentiable) and cumulative distribution function F(x) where −∞ < x <∞. The random
variable Y is defined by Y = eX . You may assume throughout this question that X and Y
have unique modes.

(i) Find the median value ym of Y in terms of the median value xm of X.

(ii) Show that the probability density function of Y is f(ln y)/y, and deduce that the mode λ
of Y satisfies f ′(lnλ) = f(lnλ).

Note that there are two more parts of this question which I have not reproduced here.

(i)

The median of X satisfies P(X 6 xm) =

∫ xm

−∞
f(x) dx = 1

2 . We want to find ym such that

P(Y 6 ym) = 1
2 .

P(Y 6 ym) = 1
2

P(eX 6 ym) = 1
2

P(X 6 ln ym) = 1
2

note that eX is a strictly increasing function

Hence we have xm = ln ym =⇒ ym = exm .

Since eX is an increasing function we can just take logarithms of both sides and preserve the
inequality. If instead we were considering Y = X2, or Y = sinX etc. things would be slightly more
complicated.
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(ii)

We have:

P(Y 6 y) = P(X 6 ln y)

=

∫ ln y

−∞
f(t) dt

= F(ln y)

(Where F(X)is the c.d.f. of X)

and so the p.d.f. of Y is given by:

fY (y) =
d

dy
F(ln y)

=
1

y
× f(ln y)

The mode of Y is where the p.d.f. has a maximum. Differentiating fY (y) with respect to y gives:

f ′Y (y) =
1

y
× 1

y
f ′(ln y)− 1

y2
f(ln y)

=
1

y2
(
f ′(ln y)− f(ln y)

)
At the mode we have f ′Y (λ) = 0, and so we have f ′(lnλ) = f(lnλ).

Note that y 6= 0 as we have Y = eX .
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Appendix

A key observation for these derivations is that a double sum (or integral) can be done in either order
(so you can sum over the x values and then the y values or vice versa). You are not expected
to know these derivations, but they are included for completeness.

• E(aX + bY ) = aE(X) + bE(Y )

If X and Y are discrete then we have:

E(aX + bY ) =
∑
x

∑
y

(ax+ by)P(X = x ∩ Y = y)

=
∑
x

∑
y

axP(X = x ∩ Y = y) +
∑
x

∑
y

byP(X = x ∩ Y = y)

=
∑
x

ax

(∑
y

P(X = x ∩ Y = y)

)
+
∑
y

by

(∑
x

P(X = x ∩ Y = y)

)
=
∑
x

axP(X = x) +
∑
y

byP(Y = y)

= aE(X) + bE(Y )

Note that
∑
y

P(X = x ∩ Y = y) is the sum of all the probabilities that X = x for all the

different values of Y , so is the sum of all the possible (disjoint) ways in which X = x can

happen. Therefore we have
∑
y

P(X = x ∩ Y = y) = P(X = x).

Note also that with a double sum over x and y we can pull out everything independent of

y and then sum the y bits first — so for example
∑
x

∑
y

xy =
∑
x

x

(∑
y

y

)
. We could

alternatively pull out all the bits independent of x and the find the sum over x first.

For continuous X and Y the argument is very similar, but we will need some definitions first:

– The joint distribution function of X and Y is the function F given by

F(x, y) = P(X 6 x, Y 6 y)

– F(x, y) =

∫ x

−∞

∫ y

−∞
f(u, v) dudv

– The marginal distribution function of X is

FX(x) = P(X 6 x) = lim
y→∞

F(x, y) =

∫ x

−∞

(∫ ∞
−∞

f(u, y) dy

)
du

– The marginal density function of X is:

fX(x) =

∫ ∞
−∞

f(x, y) dy
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Using these we have:

E(aX + bY ) =

∫ ∞
−∞

∫ ∞
−∞

(ax+ by)f(x, y) dy dx

=

∫ ∞
−∞

∫ ∞
−∞

axf(x, y) dy dx+

∫ ∞
−∞

∫ ∞
−∞

byf(x, y) dy dx

=

∫ ∞
−∞

ax

(∫ ∞
−∞

f(x, y) dy

)
dx+

∫ ∞
−∞

by

(∫ ∞
−∞

f(x, y) dx

)
dy

=

∫ ∞
−∞

axfX(x) dx+

∫ ∞
−∞

byfY (y) dy

= aE(X) + bE(Y )

• Var(X) = E(X2)− [E(X)]2

Variance is the mean squared distance from the mean, so for a discrete random variable we
have:

Var(X) =
∑[(

x− E(X)
)2 × P(X = x)

]
=
∑

x2P(X = x)− 2
∑

E(X)× xP(X = x) +
∑

[E(X)]2P(X = x)

= E(X2)− 2E(X)
∑

xP(X = x) + [E(X)]2
∑

P(X = x)

= E(X2)− 2[E(X)]2 + [E(X)]2

= E(X2)− [E(X)]2

Note that E(X) is a constant so can be taken outside the sum.

For a continuous random variable the argument is exactly the same apart from you start with

Var(X) =

∫
(x− E(X))2f(x) dx.

• Var(aX + b) = a2 Var(X)

Using Var(X) = E(X2)− [E(X)]2 we have:

Var(aX + b) = E
(
(aX + b)2

)
− [E(aX + b)]2

=
∑[

(ax+ b)2 × P(X = x)
]
− [aE(X) + b]2

=
∑

a2x2P(X = x) + 2ab
∑

xP(X = x) +
∑

b2P(X = x)− [aE(X) + b]2

= a2E(X2) +���
��2abE(X) +��b

2 − a2[E(X)]2 −���
��2abE(X)−��b2

= a2
[
E(X2)− [E(X)]2

]
= a2 Var(X)

The derivation for continuous random variables is very similar, starting with

Var(aX + b) =

∫
(ax+ b)2f(x) dx− [E(aX + b)]2.
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• If X and Y are independent Var(aX ± bY ) = a2 Var(X) + b2 Var(Y )

Note that if X and Y are independent then P(X = x ∩ Y = y) = P(X = x)×P(Y = y). We
have:

Var(aX ± bY ) = E[(aX ± bY )2]− [E(aX ± bY )]2

=
∑
x

∑
y

(a2x2 ± 2abxy + b2y2)P(X = x ∩ Y = y)− [aE(X)± bE(Y )]2

=
∑
x

a2x2P(X = x)
∑
y

P(Y = y)±
∑
x

2abxP(X = x)
∑
y

yP(Y = y)

+
∑
x

b2P(X = x)
∑
y

y2P(Y = y)− a2[E(X)]2 ∓ 2abE(X)E(Y )− b2[E(Y )]2

=
∑
x

a2x2P(X = x)× 1±
∑
x

2abxP(X = x)× E(Y )

+
∑
x

b2P(X = x)× E(Y 2)− a2[E(X)]2 ∓ 2abE(X)E(Y )− b2[E(Y )]2

= a2E(X2)±(((((
((2abE(X)E(Y ) + b2E(Y 2)− a2[E(X)]2 ∓(((((

((2abE(X)E(Y )− b2[E(Y )]2

= a2
(

E(X2)− [E(X)]2
)

+ b2
(

E(Y 2)− [E(Y )]2
)

= a2 Var(X) + b2 Var(Y )

• A similar result (but not one that you are expect to know) is that if X and Y are independent
then E(XY ) = E(X)E(Y ).

E(XY ) =
∑
x

∑
y

xyP(X = x ∩ Y = y)

=
∑
x

∑
y

xyP(X = x)P(Y = y)

since X and Y are independent

=
∑
x

xP(X = x)

(∑
y

yP(Y = y)

)
taking the bits independent of y out of the y sum

=
∑
x

xP(X = x)× E(Y )

= E(Y )×

(∑
x

xP(X = x)

)
= E(X)E(Y )
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