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STEP 3 Algebra: Solutions

1 Base Case Letting n = 1 we have:

(Tn(x))2 − Tn−1(x)Tn+1(x) = f(x)

(T1(x))2 − T0(x)T2(x) = f(x)

Which is true for the given f(x), hence the result is true when n = 1.

Inductive Step Assume the result is true when n = k, i.e. we have:

(Tk(x))2 − Tk−1(x)Tk+1(x) = f(x)

Now consider the LHS when n = k + 1.

(Tk+1(x))2 − Tk(x)Tk+2(x) = Tk+1(x)
(

2xTk(x)− Tk−1(x)
)
− Tk(x)

(
2xTk+1(x)− Tk(x)

)
=((((

((((
(

2xTk+1(x)Tk(x)− Tk+1(x)Tk−1(x)−(((((
((((2xTk(x)Tk+1(x) + (Tk(x))2

= (Tk(x))2 − Tk−1(x)Tk+1(x)

= f(x)

The first line makes use of the result (∗) when n = k and when n = k + 1.

Hence if the result is true for n = k then it is true for n = k + 1 and as it is true for n = 1
it is true for all integers n > 1.

If f(x) ≡ 0 we have (Tn(x))2 − Tn−1(x)Tn+1(x) = 0 for all n > 1. As long as Tn(x) and
Tn−1(x) are both non-zero we can rearrange to give:

Tn+1(x)

Tn(x)
=

Tn(x)

Tn−1(x)

This implies that:
Tn(x)

Tn−1(x)
=

Tn−1(x)

Tn−2(x)
= . . . =

T1(x)

T0(x)
= r(x)

And we have:

Tn(x) =
Tn(x)

Tn−1(x)
× Tn−1(x)

Tn−2(x)
× . . .× T1(x)

T0(x)
× T0(x)

=
(
r(x)

)n
T0(x)

Substituting this into (∗) gives:(
r(x)

)n+1
T0(x)− 2x

(
r(x)

)n
T0(x) +

(
r(x)

)n−1
T0(x) = 0 .
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Since we are told to assume T0(x) 6= 0 we can divide by T0(x) to get:

r(x)n−1
(

(r(x))2 − 2x× r(x) + 1
)

= 0 .

This must hold when n = 1, so we have:

(r(x))2 − 2x× r(x) + 1 = 0 .

Solving the quadratic gives:

r(x) =
2x±

√
4x2 − 4

2

= x±
√
x2 − 1

giving two possible expressions for r(x).
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2 Looking at the RHS we have:

sin
(
r + 1

2

)
θ = sin rθ cos 1

2θ + cos rθ sin 1
2θ and

sin
(
r − 1

2

)
θ = sin rθ cos 1

2θ − cos rθ sin 1
2θ

Then subtracting the second from the first gives:

sin
(
r + 1

2

)
θ − sin

(
r − 1

2

)
θ = 2 cos rθ sin 1

2θ

as required.

If
cos aθ + cos(a+ 1)θ + · · ·+ cos(b− 2)θ + cos(b− 1)θ = 0

then
2 sin 1

2θ
(

cos aθ + cos(a+ 1)θ + · · ·+ cos(b− 2)θ + cos(b− 1)θ
)

= 0

i.e. we have:[
sin
(
a+ 1

2

)
θ − sin

(
a− 1

2

)
θ
]

+
[

sin
(
a+ 3

2

)
θ − sin

(
a+ 1

2

)
θ
]

+ . . .

+
[

sin
(
b− 3

2

)
θ − sin

(
b− 5

2

)
θ
]

+
[

sin
(
b− 1

2

)
θ − sin

(
b− 3

2

)
θ
]

= 0 .

After cancelling we are left with:

sin
(
b− 1

2

)
θ − sin

(
a− 1

2

)
θ = 0 .

It would be good if we could write this as a product, using a similar formula to the one
shown at the start of the question.

Consider sinA− sinB1. This can be written as

sinA− sinB = sin
(
1
2(A+B) + 1

2(A−B)
)
− sin

(
1
2(A+B)− 1

2(A−B)
)

= sin 1
2(A+B) cos 1

2(A−B) + sin 1
2(A−B) cos 1

2(A+B)

− sin 1
2(A+B) cos 1

2(A−B) + sin 1
2(A−B) cos 1

2(A+B)

=2 sin 1
2(A−B) cos 1

2(A+B)

Using A = (b− 1
2)θ and B = (a− 1

2)θ gives:

sin
(
b− 1

2

)
θ − sin

(
a− 1

2

)
θ = 0

=⇒ 2× sin 1
2(b− a)θ × cos 1

2(b+ a− 1)θ = 0

This means that the solutions are:

1
2(b− a)θ = nπ or

1
2(b+ a− 1)θ =

(2n+ 1)π

2
1In the year that this question was set the formula for sinA− sinB was given in the accompanying formula book.
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Draw a sketch to convince yourself of these general solutions for sinφ = 0 and cosφ = 0!

An alternative approach is to use sinA = sinB if and only if A = B+2nπ or A = π−B+2nπ.
Draw a sketch to convince yourself why this is true!

However, we did multiply the original equation by 2 sin 1
2θ, which introduced solutions of the

form θ = 2mπ. These do not solve the original equation cos aθ + cos(a+ 1)θ + · · ·+ cos(b−
2)θ + cos(b − 1)θ = 0, as all the cos terms will be equal to 1, so we need to remove these
“solutions”.

The solutions to the original equation are:

1
2(b− a)θ = nπ =⇒ θ =

2nπ

b− a
for n 6= k(b− a) and

1
2(b+ a− 1)θ =

(2n+ 1)π

2
=⇒ θ =

(2n+ 1)π

b+ a− 1
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3 (i) Repeated use of difference of two squares will give:

(1− x)(1 + x)
(
1 + x2

) (
1 + x4

)
. . .
(
1 + x2

n)
=
(
1− x2

) (
1 + x2

) (
1 + x4

)
. . .
(
1 + x2

n)
=
(
1− x4

)
. . .
(
1 + x2

n)
=
(
1− x2n

) (
1 + x2

n)
= 1− x2n+1

Rearranging gives:

1 = (1− x)(1 + x)
(
1 + x2

) (
1 + x4

)
. . .
(
1 + x2

n)
+ x2

n+1

1

1− x
= (1 + x)

(
1 + x2

) (
1 + x4

)
. . .
(
1 + x2

n)
+
x2

n+1

1− x
.

Since |x| < 1, as n→∞, x2
n+1 → 0 and we have:

1

1− x
= (1 + x)

(
1 + x2

) (
1 + x4

)
. . .
(
1 + x2

r)
. . .

=

∞∏
r=0

(
1 + x2

r)
Taking logs of both sides gives:

ln

(
1

1− x

)
= ln

( ∞∏
r=0

(
1 + x2

r))
− ln(1− x) = ln(1 + x) + ln

(
1 + x2

)
+ . . .+ ln

(
1 + x2

r)
+ . . .

ln(1− x) = −
∞∑
r=0

ln
(
1 + x2

r)
.

The last part looks like it might involve differentiation. Starting with the last result
we have:

ln(1− x) = − ln(1 + x)− ln
(
1 + x2

)
− ln

(
1 + x4

)
− . . .

d

dx
=⇒ − 1

1− x
= − 1

1 + x
− 2x

1 + x2
− 4x3

1 + x4
− . . .

1

1− x
=

1

1 + x
+

2x

1 + x2
+

4x3

1 + x4
+ . . .

(ii) Comparing this part to the previous part (note the similarities in the denominators),
start by considering:(

1 + x+ x2
) (

1− x+ x2
) (

1− x2 + x4
) (

1− x4 + x8
)
. . .
(

1− x2n + x2
n+1
)

Expanding the first two brackets gives:(
1 + x+ x2

) (
1− x+ x2

)
=
(
1 + x2

)2 − x2
= 1 + 2x2 + x4 − x2

= 1 + x2 + x4 .
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In general we have:(
1 + x2

r
+ x2

r+1
)(

1− x2r + x2
r+1
)

=
(

1 + x2
r+1
)2
−
(
x2

r)2
= 1 + 2x2

r+1
+ x2

r+2 − x2r+1

= 1 + x2
r+1

+ x2
r+2

Using this we have:(
1 + x+ x2

) (
1− x+ x2

) (
1− x2 + x4

)
. . .
(

1− x2n + x2
n+1
)

= 1 + x2
n+1

+ x2
n+2

.

and rearranging gives:

1

1 + x+ x2
=
(
1− x+ x2

) (
1− x2 + x4

)
. . .
(

1− x2n + x2
n+1
)
−

(
x2

n+1
+ x2

n+2

1 + x+ x2

)

Since |x| < 1 as n→∞ the last term tends to 0. We now have:

1

1 + x+ x2
=

∞∏
r=0

(
1− x2r + x2

r+1
)

Taking logs of both sides results in:

− ln
(
1 + x+ x2

)
=

∞∑
r=0

ln
(

1− x2r + x2
r+1
)

ln
(
1 + x+ x2

)
= −

∞∑
r=0

ln
(

1− x2r + x2
r+1
)

ln
(
1 + x+ x2

)
= − ln

(
1− x+ x2

)
− ln

(
1− x2 + x4

)
− ln

(
1− x4 + x8

)
− ln

(
1− x8 + x16

)
− . . .

Then differentiating both sides gives:

1 + 2x

(1 + x+ x2)
= − −1 + 2x

(1− x+ x2)
− −2x+ 4x3

(1− x2 + x4)
− −4x3 + 8x7

(1− x4 + x8)
− . . .

=
1− 2x

(1− x+ x2)
+

2x− 4x3

(1− x2 + x4)
+

4x3 − 8x7

(1− x4 + x8)
+ . . .

Alternatively, you could replace x by x3 in the result ln(1− x) = −
∑∞

r=0 ln
(
1 + x2

r)
from part (i), then use the difference and sum of two cubes formulae, a3 − b3 =
(a − b)

(
a2 + ab+ b2

)
and a3 + b3 = (a + b)

(
a2 − ab+ b2

)
, and subtract the part (i)

result before differentiating. Both ways are fine!
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4 (i) If α is a root of both equations then we have:

α2 + aα+ b = 0 and (1)

α2 + cα+ d = 0 (2)

Evaluating (1)− (2) gives:

α(a− c) + (b− d) = 0

α(a− c) = −(b− d)

α = −b− d
a− c

as a− c 6= 0

Starting with the “if” part we have:

(b− d)2 − a(b− d)(a− c) + b(a− c)2 = 0 divide by (a− c)2(
b− d
a− c

)2

− a
(
b− d
a− c

)
+ b = 0

and so x = − b−d
a−c is a solution of x2 + ax+ b = 0. Substituting into the other equation

gives:

x2 + cx+ d =

(
b− d
a− c

)2

+ c

(
−b− d
a− c

)
+ d

=

(
b− d
a− c

)2

+ (c− a)

(
−b− d
a− c

)
+ a

(
−b− d
a− c

)
+ (d− b) + b

=

[(
b− d
a− c

)2

+ a

(
−b− d
a− c

)
+ b

]
+ (c− a)

(
−b− d
a− c

)
+ (d− b)

=
[
0
]

+���
�(a− c)b− d
���a− c

+ (d− b)

= 0

So x = − b−d
a−c is a solution of both equations.

Going the other way (“Only if”), if the equations have a common root, α then we have
α = − b−d

a−c . Substituting into x2 + ax+ b = 0 gives:(
−b− d
a− c

)2

+ a

(
−b− d
a− c

)
+ b = 0 multiply by (a− c)2

(b− d)2 − a(b− d)(a− c) + b(a− c)2 = 0

Hence the equations have at least one common root if and only if
(b− d)2 − a(b− d)(a− c) + b(a− c)2 = 0.

If we have (b− d)2 − a(b− d)(a− c) + b(a− c)2 = 0 and a = c then this implies that
b− d = 0 and hence b = d and the two equations are the same (therefore must have at
least one common root!).

If we have at least one common root, α, and a = c, then we have α2 + aα+ b = 0 and
α2+aα+d = 0 which implies that b = d and hence (b−d)2−a(b−d)(a−c)+b(a−c)2 = 0
and so the result still holds when a = c.
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(ii) If
(b− r)2 − a(b− r)(a+ b− q) + b(a+ b− q)2 = 0

then letting d→ r and c→ q − b from part (i) shows that

x2 + ax+ b = 0 and (3)

x2 + (q − b)x+ r = 0 have a common root. (4)

If α is a common root to (3) and (4), then it is also a root of x× (3) + (4), i.e.:

x
(
x2 + ax+ b

)
+ x2 + (q − b)x+ r = 0

x3 + ax2 + bx+ x2 + qx− bx+ r = 0

x3 + (a+ 1)x2 + qx+ r = 0

Therefore, if (b− r)2− a(b− r)(a+ b− q) + b(a+ b− q)2 = 0 then x2 + ax+ b = 0 and
x3 + (a+ 1)x2 + cx+ d = 0 have at least one common root.

If x2 +ax+ b = 0 and x3 + (a+ 1)x2 + qx+ r = 0 have a common root α then we have:

α2 + aα+ b = 0 (5)

α3 + (a+ 1)α2 + qα+ r = 0 (6)

Then considering (6)− α(5) we have:

α3 + (a+ 1)α2 + qα+ r − α
(
α2 + aα+ b

)
= 0

��α
3 + (a+ 1)α2 + qα+ r −��α3 − aα2 − bα = 0

α2 + (q − b)α+ r = 0

Hence the two equations x2 + ax+ b = 0 and x2 + (q − b)x+ r = 0 have at least one
common root, and so by using the result in part (i) we have:

(b− d)2 − a(b− d)(a− c) + b(a− c)2 = 0 let c = q − b and d = r

(b− r)2 − a(b− r)(a− q + b) + b(a− q + b)2 = 0 as required.

For the last part, take a = 5
2 , q = 5

2 and r = 1
2 , and then we have:

(b− r)2 − a(b− r)(a− q + b) + b(a− q + b)2 = 0(
b− 1

2

)2 − 5
2

(
b− 1

2

) (
5
2 −

5
2 + b

)
+ b

(
5
2 −

5
2 + b

)2
= 0

b2 − b+ 1
4 −

5
2b
(
b− 1

2

)
+ b3 = 0

b3 + b2 − b+ 1
4 −

5
2b

2 + 5
4b = 0

b3 − 3
2b

2 + 1
4b+ 1

4 = 0

4b3 − 6b2 + b+ 1 = 0

One of the solutions is b = 1, so the others are given by 4b2 − 2b − 1 = 0, i.e.

b =
2±
√

20

8
=

1±
√

5

4
.
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