

STEP Support Programme

STEP 2 Equations Questions: Solutions

These are not fully worked solutions — you need to fill in the gaps. The questions do not ask you to sketch any graphs, but it might be a very good idea to!

1 (i) First thing to notice is that $(x-1)^4 + (x+1)^4 > 0$ (it cannot equal zero as then both brackets would have to be zero at the same time).

If you expand and simplify you get the equation $2x^4 + 12x^2 + 2 - c = 0$. Letting $x^2 = t$ gives $2t^2 + 12t + 2 - c = 0$, and we must have $t \ge 0$ (as x is real and $x^2 = t$). Solving for t gives $t = \frac{-12 \pm \sqrt{144 - 8(2 - c)}}{4}$.

The negative square root will always give a negative value of t, so we need $-12+\sqrt{144-8(2-c)}\geqslant 0$, or equivalently $144-8(2-c)\geqslant 144$, which means that we need $c\geqslant 2$. When $c=2,\ t=x^2=0$ so we have just one solution, x=0. Also, there are two solutions if c>2 ($x^2=t$ means that $x=\pm\sqrt{t}$) and none if c<2.

Otherwise you can sketch the graph of $y=(x-1)^4+(x+1)^4$. If you differentiate you find that $\frac{\mathrm{d}y}{\mathrm{d}x}=x^3+3x=x(x^2+3)$, so there is only one turning point at (0,2). Furthermore $x^2+3>0$ for all x so we have $\frac{\mathrm{d}y}{\mathrm{d}x}<0$ when x<0 and $\frac{\mathrm{d}y}{\mathrm{d}x}>0$ when x>0, so this one turning point is a minimum (or you can look at the sign of the second derivative). You can then sketch the graph and show that it intersects the line y=c twice if c>2, once if c=2 (as then it passes through the vertex) and not at all if c<2.

- (ii) This graph is simply a translation of the previous one by 2 units to the right if $(x-1)^4 + (x+1)^4 = f(x)$ then $(x-3)^4 + (x-1)^4 = f(x-2)$. The answer will therefore be the same the one given in part (i).
- (iii) When drawing y = |x-3| + |x-1| there are "critical values" at x = 1 and x = 3. This means that:

$$y = \begin{cases} -(x-3) - (x-1) = 4 - 2x & \text{for } x < 1\\ -(x-3) + (x-1) = 2 & \text{for } 1 \le x \le 3\\ (x-3) + (x-1) = 2x + 4 & \text{for } x > 3 \end{cases}$$

So there are no solutions for c < 2, two solutions for c > 2 and infinitely many solutions when c = 2 (as then all the values of x such that $1 \le x \le 3$ satisfy the equation).

(iv) To sketch $y = (x-3)^3 + (x-1)^3$, first find the derivative. This gives $\frac{dy}{dx} = 6x^2 - 24x + 30$ which can be written as $6(x-2)^2 + 6$. Hence the gradient is always positive, and is least when x = 2. No turning points so exactly one root for any value of c.

For parts (iii) and (iv) you could treat them as a translation of a function in (x + 1) and (x - 1), but that doesn't seem to make the question much easier!

2
$$e^1 = 1 + 1 + \frac{1^2}{2!} + \frac{1^3}{3!} + \frac{1^4}{4!} + \cdots$$
 which means $e > 1 + 1 + \frac{1}{2} + \frac{1}{6} = \frac{8}{3}$.

When n = 4 we have 4! = 24 and $2^4 = 16$ so we have $n! > 2^n$. One argument would then be now consider (m+4)! and 2^{m+4} where m is an integer with $m \ge 1$. The first one is the product of 4! and m integers, each of which is greater than 4 and the second is the product of 2^4 and m more factors of 2. Hence $(m+4)! > 2^{m+4}$.

Alternative we can use a formal induction argument. We have already shown that $n! > 2^n$ when n = 4, now assume that is it true when n = k i.e. we have $k! > 2^k$ (and $k \ge 4$). Now we have:

$$(k+1)! = (k+1) \times k! > 2 \times k! > 2 \times 2^k = 2^{k+1}$$
.

(The first inequality sign is because if $k \ge 4$ then we have k+1>2). Hence if it is true for n=k, it is true for n=k+1 and as it is true for n=4 it is true for all integers $n \ge 4$.

This means that for $n \ge 4$ we have $\frac{1}{n!} < \frac{1}{2^n}$. So we have:

$$e < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{2^4} + \frac{1}{2^5} + \cdots$$

The first 4 terms sum to $\frac{8}{3}$. The rest form a geometric series which has a sum of $\frac{1}{8}$, so we have $e < \frac{8}{3} + \frac{1}{8} = \frac{67}{24}$.

Differentiation gives $\frac{dy}{dx} = 6e^{2x} - 14 \times \frac{1}{\frac{4}{3} - x}$. Trying to find the coordinates of the stationary point(s) is not easy, but what we can do is look at the sign of the gradient for $x = \frac{1}{2}$ and x = 1.

When $x = \frac{1}{2}$ we have:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\mathrm{e} - 14 \times \frac{6}{5} < 6 \times \frac{67}{24} - \frac{84}{5} = -\frac{1}{20} < 0$$

and hence the gradient is negative for $x = \frac{1}{2}$.

When x = 1 we have:

$$\frac{dy}{dx} = 6e^2 - 14 \times 3 > 6 \times \left(\frac{8}{3}\right)^2 - 42 = \frac{2}{3} > 0$$

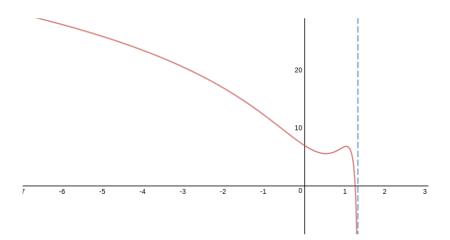
and the gradient is positive for x = 1, therefore there is a minimum between $x = \frac{1}{2}$ and x = 1.

As $x \to -\infty$, we have $y \approx 14 \ln(-x)$. The graph is undefined for $x \geqslant \frac{4}{3}$ and as $x \to \frac{4}{3}$ we have $y \to -\infty$. This, along with the minimum between $x = \frac{1}{2}$ and x = 1 suggest that there will be a maximum between x = 1 and $x = \frac{4}{3}$, and you can show that when $x = \frac{5}{4}$ we have:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6e^{\frac{5}{2}} - 14 \times 12 < 6 \times 27 - 14 \times 12 = -6$$

using e < 3 and $e^{\frac{5}{2}}$ < e^3 . Therefore the gradient is negative when $x = \frac{5}{4}$ and there is a maximum point between x = 1 and $x = \frac{5}{4}$.

The graph looks like this:



3 (i) The question is an "if and only if" so you need to show that if the equations have a solution then b = 11 (the "only if" part) and if b = 11 then the equations have a solution.

Start with the "only if" by setting a=0 and solving the first two equations. This gives y=-1 and z=-2 (and x can be anything). If this is to be a solution of the set of three equations then the third one must be satisfied as well, so we need $-(-1)-5\times(-2)=b$ which gives b=11.

Then if b = 11 we can show that the three equations have a solution (by substituting in x = 1, y = -1, z = -2 and showing that these values satisfy all three equations).

Actually the equations have infinitely many solutions when b = 11, "a solution" does not mean "exactly one".

- (ii) Let $z = \lambda$. You can then use the first two equations to show that $x = \frac{4+2\lambda}{a}$ and $y = 1 + \lambda$. You then need to check that these satisfy the third equation.
- (iii) If a=2 and b=11 then anything of the form $x=2+\lambda, y=1+\lambda, z=\lambda$ will be a solution. This gives:

$$x^{2} + y^{2} + z^{2} = (2 + \lambda)^{2} + (1 + \lambda)^{2} + \lambda^{2} = 3\lambda^{2} + 6\lambda + 5$$
.

To minimise this you can differentiate with respect to λ and set the derivative equal to 0, but then you do need to show that this value of λ gives a minimum (instead of a maximum, for example). It is perhaps simpler to write $3\lambda^2 + 6\lambda + 5 = 3(\lambda + 1)^2 + 2$ and then you can see that this will be minimised when $\lambda = -1$.

Hence we have x = 1, y = 0 and z = -1.

(iv) Let b=11 again so that we know a solution exists, and we know we can write it as in part (ii). Then we have $y^2+z^2=(1+\lambda)^2+\lambda^2$ and the condition $y^2+z^2<1$ means that $\lambda^2+\lambda<0$ and hence we need $-1<\lambda<0$. So we could take $\lambda=-\frac{1}{2}$, which will give $y=\frac{1}{2},\ z=-\frac{1}{2}$ and $x=\frac{3}{a}$. A possible value of a is 10^{-6} .

- 4 (i) Differentiation gives $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 3q$ so the stationary points satisfy $x^2 = q$ and are at $(\sqrt{q}, -2q\sqrt{q} q(1+q))$ and $(-\sqrt{q}, 2q\sqrt{q} q(1+q))$. The y coordinate of the first of these is obviously negative if q > 0 (but this still should be stated!). The y coordinate of the second one of these can be written as $-q(1+q-2\sqrt{q}) = -q(1-\sqrt{q})^2$ and so this is also negative (since we are told that $q \neq 1$, otherwise this point would be on the x axis and there would be two points of intersection of the curve with the x axis). Hence both turning points of the cubic lie below the x axis and the curve only crosses the x axis once.
 - (ii) Substituting x = u + q/u into the equation for x and simplifying gives the equation in u as $(u^3)^2 q(1+q)u^3 + q^3 = 0$. Solving for u^3 gives:

$$u^{3} = \frac{q(1+q) \pm \sqrt{q^{2}(1+q)^{2} - 4q^{3}}}{2}.$$

The part in the square brackets is equal to $q^4 - 2q^3 + q^2 = q^2(1-q)^2$, and so we have $u^3 = q$ or q^2 i.e. $u = q^{\frac{1}{3}}$ or $q^{\frac{2}{3}}$. Both of these values of u give the same value of x, which is good as we have shown that there is only one possible value in part (i), i.e. $x = q^{\frac{1}{3}} + q^{\frac{2}{3}}$.

(iii) Since $t^2 - pt + q \equiv (t - \alpha)(t - \beta)$ we have $\alpha\beta = q$ and $\alpha + \beta = p$.

We also have $(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha^2\beta + 3\alpha\beta^2 = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)$. This means that $p^3 = \alpha^3 + \beta^3 + 3qp$.

Since one of the roots is the square of the other we know that either $\alpha^2 = \beta$ or $\beta^2 = \alpha$. Hence we have $(\alpha^2 - \beta)(\beta^2 - \alpha) = 0$. Hence $\alpha^2\beta^2 + \alpha\beta - \alpha^3 - \beta^3 = 0$ and so $q^2 + q - (p^3 - 3qp) = 0$. This can be written as $p^3 - 3qp - q(1+q) = 0$ which looks suspiciously like something that appears in parts (i) and (ii), just with p instead of x. Then with the given conditions on q we have the same situation as in part (ii) and so $p = q^{\frac{1}{3}} + q^{\frac{2}{3}}$.

