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STEP 3 Hyperbolic Functions: Solutions

Start by using the substitution ¢ = cosh x. This gives:
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V2cosha + 1

Since the question said “show that” you should show how each stage is derived.

For the next integral use ¢t = sinh . This gives:
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For the “Hence”, first note that 1+ 2sinh?z = 1 + 2 (cosh2 T — 1) = 2cosh? z — 1. We then
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Then as a — oo we have cosha — oo and sinh a — oco. This means that

maths.org/step

sinh a costi @
X
142t2° cosht

X V2 [tan’1 (\/itﬂ
L tan ! (\/i sinh a)

1+ 2sinh?z o

2cosh?z — 1
V2cosha — 1
V2cosha + 1

V2cosha — 1 o
V2cosha + 1


https://maths.org/step/

58 UNIVERSITY OF
) CAMBRIDGE

and tan—1 (\/i sinh a) — g Hence we have:
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as required.
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For the last part, start by noting that coshz = %(ex +e™) = %(u + %) and similarly

sinhz = % (u — %)

Using the substitution u = e* gives:
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Hence from the previous result we have:
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2 The hints document gives some useful formulae. There are lots of different approaches, this
is just one possible method.

Using integration by parts on T gives:
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Comparing U with T" and V, it would be nice if I could convert a limit of In 2 to one of % If
dt
u = In2 implies t = % then it might be worth trying ¢ = e, which gives i —e 4= —t.
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Using this substitution:

The final thing we need to do is show that X is equal to one of the other three. Looking
at the limits ¢ = % and z = %ln?) suggests that we might want to use a substitution of
T = %ln (%) = —% Int or equivalently t = e~ 2%,
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Starting with 1" we have:
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d
3 Differentiating we have d—y = 37 X 2x, but this doesn’t look immediately promising.
r  x?—

We also have:

y=Inr’=2Inr
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Since we have coth@ = z, 22 — 1 = coth? § — 1 = cosech? §. Hence:
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= cosh 8
We therefore have:
dy _dy dr
dez  dr "~ da
2
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r
2 cosh @ )
= as required
r

Now we differentiate again:
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Since x = coth 6, we have
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_ -1
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and so % = —sinh?#. We also have r = v/coth? 8 — 1 = cosech § and g—; = cosh 6.
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Differentiating again gives:
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n

n—1Something x coshnf

Looking at these results, a reasonable conjecture would be d—g =(-1) —
x r

To find a suitable expression for “something”, look back to see how these constants were

4
formed previously. It might be helpful to look at what % might be. If you differentiated
x

again, the 4 would be multiplied by 3 (from both the power of r and the multiple of 8).

Hence we seem to have:

n=1 constant = 2
constant =2 x1=2
constant =2 x1x2=4

n=4 constant =2 x1x2x3=12

So the “something” might be 2(n — 1)! .

Now we need to carry out the proof by induction.

d?’l

hnd
Conjecture: d—g =2(n— 1)!(_1)n—1 coshnv
x

Tn

Base case: From the previous work, we can see that the conjecture is true for n = 1,2, 3.
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Inductive step:

dk h k6
Assume the conjecture is true when n = k, so we have d—i =2(k - 1)!(=1)F1! %.
x r

Differentiating with respect to x gives:
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RS |

=2(k — 1)I(=1)*! L (cosech @ sinh k6 x (— sinh? 0) — cosh kf x cosh 9)}

=2(k — DI(—1)F

—57(—1) (sinh k6 x sinh 6 + cosh k6 x cosh 9)}
,

w1 cosh(k+1)6

=2k x (k—1)1(-1) x (-1) RN

— 2(k)(—1)F W

Which is the same expression as the conjecture with n =k + 1.

Hence the conjecture is true for n = k then it is true for n = k + 1, and since it is true for
n = 1 it is true for all integers n > 1.
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4 This is quite a long question!

Substituting x = 2a cosh (%T ) into the left hand side of the equation gives:

2% — 3a’z = 8a? cosh? (%T) — 6a° cosh (%T)
= 2a° (4 cosh? (%T) — 3 cosh (%T))

=2a3cosh T using the first given result

Hence x = 2a cosh (%T) is a solution to the equation.

Comparing z3 — 3bx = 2c and 2 — 3ax = 2a3 cosh T is appears that we want to take b = a?
(which as b3 > 0 == b > 0 is an ok thing to do).

c c
Further we want ¢ = a3 coshT i.e. coshT = = For this to be ok we need — > 1. We are
a a

told that ¢ > b, and as we are taking b = a? this means ¢ > a®. As long as ¢ and a have
. . c
the same sign, this means that ¢ > a® and s > 1.

T
We therefore know that one solution is x = 2a cosh (3)
Using the second result given at the start of the question we have:

T = arcosh (%)
a

c c?
<c+\/02 —a6>
=In —

a

a

<c+ Ve — b3>
—m [ Y

Therefore the root becomes:

x = 2a cosh (g)
= 2a X cosh (ln <%>)
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b b
We now have a root © = v+ —, which means that <x —u— ) is a factor of 23 — 3bx — 2c.
U u

There are various ways to proceed, including long division or by using;:

b
2° — 3bx — 2c = (ac—u—u> (x2+A:c+B)

Equating coefficients for this last one gives us:

b
B =2c—+ <u—|—)
U

A=u+ —
u

and so the other roots are the roots of the equation:

24 (s 2ot [2ox (ue )] 0.

b
This is not in the required form yet, but since = u 4+ — is a solution to x> — 3bz = 2¢ we
u

e oed) (o2
(-

: 2
= <u+> u2—|—2b—|—2—3b]
u u

have:

b\ [ b2
u/ | u
So now we know that the other roots are the roots of the equation:
b b?
z% + <u+>x+ [u2+2—b] =0.
u u

Using the quadratic formula we have:

B (1 8) (o B - (2 £ o)

D=

b2 b2
j:\/u2+2b+2—4u2—42+4b
u u

|
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)i (o-2)
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We now want this in terms of w = % (—1 + 1\/§) ‘We have:

;[— <u+z>+i\/§x <U—Z>] :ux%(—1+i\/§)+§><%<—1—i\/§>

Noting that w? = 3(1 — 3 — 2iv/3) = 1(-1 —iV3).

The other root is:

) -2 -

D=

For the final part, we have 23 — 62 = 6 which means b = 2 and ¢ = 3. This gives:

a=Vb=+2
1
u:<c+ c2—b3>3:(3+1)%:2§
9:%:2%
u 23

The solutions are therefore:

b 2
u+ — =23 +23
U

b
uw + —w? = Z%w + Q%wz
U

b
ww? + —w = 2%w2 + 2%w
U
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