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STEP 3 Mechanics: Solutions

1 (i) Let the velocity of the first mass after the collision be v1 and the velocity of the second
mass be v2 = v2n.
Conservation of momentum gives us:

mu = mv1 +mµv2n =⇒ u = v1 + µv2n

Newton’s experimental law applies to the speeds in the direction of the “line of centres”
of the two discs when they meet. Since the second disc starts at rest and moves in the
direction given by n after the collision then the direction in which Newton’s experi-
mental law applies is the direction represented by n. We need to find the component
of speed in the same direction as n for the first particle before and after the collision.
These are given by u ·n and v1 ·n respectively (see the hints for an explanation). The
collision is elastic (e=1) so we have:

u · n = v2 − v1 · n

Substituting v1 = u− µv2n (from conservation of momentum) we have:

u · n = v2 − v1 · n
u · n = v2 − (u− µv2n) · n
u · n = v2 − u · n + µv2

2u · n = (1 + µ)v2

=⇒ v2 =
2u · n
1 + µ

(ii) If the two discs have equal kinetic energy then we have:

1
2m|v1|2 = 1

2µmv
2
2 =⇒ |v1|2 = µv22

Using v1 = u− µv2n from part (i) we have:

(u− µv2n) · (u− µv2n) = µv22

u · u− 2µv2u · n + µ2v22n · n = µv22

|u|2 − 2µv2u · n = µ(1− µ)v22

|u|2 − 2µ× 2u · n
1 + µ

× u · n = µ(1− µ)
4(u · n)2

(1 + µ)2

(1 + µ)2|u|2 − 4µ(1 + µ)(u · n)2 = 4µ(1− µ)(u · n)2

(1 + µ)2|u|2 = 4µ
[
(1− µ) + (1 + µ)

]
(u · n)2

(1 + µ)2|u|2 = 8µ(u · n)2

We have u · n = |u||n| cos θ, where θ is the angle between u and n, and so:

(1 + µ)2|u|2 = 8µ|u|2 cos2 θ

=⇒ cos2 θ =
(1 + µ)2

8µ
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We know that 0 6 cos2 θ 6 1 and so we have:

0 6
(1 + µ)2

8µ
6 1

Since µ > 0 (otherwise the second disc has zero or negative mass) and (1 +µ)2 > 0 we
have:

(1 + µ)2

8µ
6 1

(1 + µ)2 6 8µ

1 + 2µ+ µ2 6 8µ

µ2 − 6µ+ 1 6 0

(µ− 3)2 − 9 + 1 6 0

(µ− 3)2 6 8

Sketching a quick graph of (µ− 3)2 or (µ− 3)2 − 8 leads to:

(µ− 3)2 6 8

=⇒ −
√

8 6µ− 3 6
√

8

=⇒ 3−
√

8 6µ 6 3 +
√

8
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2 Start by drawing a diagram.

The hoop is smooth, so energy is conserved, i.e. the kinetic energy of the two particles added
to the energy stored in the spring is constant. This gives us:

2× 1
2m
(
aθ̇
)2

+mk2a2 (θ − α)2 = c =⇒

θ̇2 + k2 (θ − α)2 = c′

If we differentiate this with respect to time we have:

2θ̇θ̈ + 2k2θ̇ (θ − α) = 0

and, assuming that θ̇ is not identically zero:

θ̈ + k2 (θ − α) = 0 =⇒
d2

dt2
(θ − α) + k2 (θ − α) = 0

If we let θ − α = φ, then we get the equation φ̈ = −k2φ, i.e. Simple Harmonic Motion.

The different cases that occur depend on whether the spring passes through to the other
“side” of the circle or not. This depends on whether the original compressed spring has
enough energy to go “over the top” (i.e. to reach θ = π

2 ). The diagram on the next page
shows the “compressed spring” (when θ = β), the “natural length” (when θ = α) and what
happens as the beads go “over the top”.
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Case 1 Assume that θ < π
2 throughout the motion, which means that the spring stays on

the same “side” of the circle. Considering:

d2

dt2
(θ − α) + k2 (θ − α) = 0

we have Simple Harmonic Motion with period
2π

k
. Since the spring starts in compression we

have β < α and θ − α = (β − α) cos kt. Hence the maximum value of θ − α is α− β, so the
maximum value of θ is α+ α− β.

Then:

θ <
π

2
=⇒ 2α− β < π

2

=⇒ β > 2α− π

2

This makes sense when you think about the system. The smaller β is then the more
“squished” the spring is, so it will have a greater initial potential energy, and so the beads
are more likely to go “over the top”.

Case 2 When β = 2α − π
2 , then we can have θ = π

2 , which will happen when cos kt = −1.

At this point we have θ̇ = k (β − α) sin kt and as sin kt = 0 when cos kt = −1 we have θ̇ = 0.
At this point the beads are stationary on either side of a diameter of the circle, so the spring
is pulling them both “inwards”, so they stay where they are and there are no oscillations.

Case 3 If β < 2α− π
2 , then at some time (t1 say) we have θ = π

2 , when we have:

π

2
− α = (β − α) cos kt1 =⇒

cos kt1 =
π
2 − α
β − α

=⇒

t1 =
1

k
arccos

π
2 − α
β − α
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Note that as β < 2α−π
2 we have cos kt1 =

π
2 − α
β − α

>
π
2 − α

2α− π
2 − α

= −1 and so θ̇ = k sin(kt1) 6=

0 and the beads pass “over the top”.

Once we pass θ = π
2 , the beads pass “over the top” and the motion is repeated on the other

side (so the spring will compress back down again, then extend and pass back to the original

side). Hence the time period is 4× t1 =
4

k
arccos

π
2 − α
β − α

.
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3 The diagram below shows the forces acting on the hoop (in red) and the forces acting on the
mouse (in green). Let ∠AOM = 2θ, which means that ∠APM = θ. The suspension force
from the axis on hoop is S, and N is the normal reaction force and Fr is the frictional force
between the hoop and the mouse. Let mH be the mass of the hoop and mM be the mass
of the mouse. The hoop is “free to rotate” so there is no friction between the hoop and the
axis through P .

If the system is in equilibrium then there is no “turning force” acting on the hoop, i.e. the
moment about P is zero. The “lines of action” of S and the weight pass through P , so have
zero moment about P . The net moment about P is:

|PM | × Fr cos θ − |PM | ×N sin θ = 0 =⇒
Fr = N tan θ (1)

When the mouse is running at a constant speed u then its tangential acceleration is zero and
the radial acceleration is given by u2

a . The equations of motion for the mouse are therefore:

Fr −mMg sin 2θ = 0 (2)

N −mMg cos 2θ =
mMu

2

a
(3)

Using (1) and (2) gives:

N =
1

tan θ
×mMg sin 2θ

=
cos θ

sin θ
× 2mMg sin θ cos θ

= 2mMg cos2 θ

Then substituting this into (3) gives:

mMu
2

a
= 2mMg cos2 θ −−mMg cos 2θ

u2

a
= 2g cos2 θ − g cos 2θ

u2 = ag
(
2 cos2 θ − (2 cos2 θ − 1)

)
u2 = ag
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Hence if the mouse chooses a constant speed of u =
√
ag it can run whilst the hoop stays

with diameter POA vertical.

If u2 = ag, then we have Fr = mMg sin 2θ and:

N = mMg cos 2θ +
mMu

2

a

= mMg cos 2θ +
mMag

a
= mMg (cos 2θ + 1)

= 2mMg cos2 θ

We can write Fr as Fr = 2mMg cos2 θ tan θ.

Limiting friction occurs when Fr = µN , i.e.:

2mMg cos2 θ tan θ = µ× 2mMg cos2 θ

tan θ = µ

θ = arctanµ

If angle θ goes beyond this, i.e. when ∠AOM = 2θ exceeds 2 arctanµ then the mouse will
start to slip and the hoop will start to rotate in the opposite direction to the mouse (in the
diagram at the start of this question the hoop will swing to the left).
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4 The diagram below shows the initial position of the ring (A), the point at which the string
becomes slack (B) and a general position of the ring. The forces acting on the ring are shown
in red.

A very important point to note is that the angle at the centre is 2φ, so for the circular
equations of motion we need to replace θ with 2φ (and θ̇ = ˙(2φ) etc.).

Let the Potential Energy of the ring at its starting position (i.e. point A) be 0. As the points
P , B and the centre of the hoop form an equilateral triangle we have ∠APB = π

3 . This
means that the vertical height of B above A is a+ 1

2a = 3
2a.

We are told that the ring starts from rest and that it comes to rest just as the string becomes
slack. Using conservation of energy at the points A and B we have:

λa2

2a
= 3

2a×mg =⇒

λ = 3mg

Hence the modulus of elasticity is λ = 3mg.

When the string makes an angle φ to the downwards vertical, there is potential energy, elastic
potential energy and kinetic energy to consider. At this point, the length of the string is
given by:

L2 = a2 + a2 − 2a2 cos (π − 2φ)

= 2a2 + 2a2 cos (2φ)

= 2a2
(

1 + cos (2φ)
)

= 2a2 × 2 cos2 φ =⇒
L = 2a cosφ

Therefore the extension in the string at this point is x = 2a cosφ− a.
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Using conservation of energy at the point when the string makes angle φ with the downwards
vertical and at the point when the string becomes slack gives:

3
2mga = mg (a− a cos 2φ) + 1

2m
(
a ˙(2φ)

)2
+
λ (2a cosφ− a)2

2a

3
2mga = mga (1− cos 2φ) + 2ma2φ̇2 +

3mg × a2 (2 cosφ− 1)2

2a

3g = 2g (1− cos 2φ) + 4aφ̇2 + 3g (2 cosφ− 1)2

3g = 2g
(
2− 2 cos2 φ

)
+ 4aφ̇2 + 3g

(
4 cos2 φ− 4 cosφ+ 1

)
3g = 8g cos2 φ− 12g cosφ+ 7g + 4aφ̇2

0 = 8g cos2 φ− 12g cosφ+ 4g + 4aφ̇2 =⇒
4aφ̇2 = −8g cos2 φ+ 12g cosφ− 4g (*)

The tension in the string at the general point is T =
λx

l
=

3mg (2a cosφ− a)

a
= 3mg (2 cosφ− 1).

Using F = ma radially for the ring gives:

ma ˙(2φ)
2

= R−mg cos 2φ+ 3mg (2 cosφ− 1) cosφ

Rearranging gives:

R = 4maφ̇2 +mg cos 2φ− 3mg cosφ (2 cosφ− 1)

Using (∗) to eliminate φ̇2 results in:

R = m
(

12g cosφ− 8g cos2 φ− 4g
)

+mg cos 2φ− 3mg cosφ (2 cosφ− 1)

R = mg
[
12 cosφ− 8 cos2 φ− 4 + 2 cos2 φ− 1− 3

(
2 cos2 φ− cosφ

) ]
R = mg

[
− 12 cos2 φ+ 15 cosφ− 5

]
This looks like the given result, but is the negative of such. It might be that this R is always
negative, so to find the magnitude we would need |R| = −R.

Completing the square on our expression for R gives:

R = mg
[
− 12 cos2 φ+ 15 cosφ− 5

]
= mg

[
− 12

(
cos2 φ− 15

12 cosφ
)
− 5
]

= mg
[
− 12

( (
cosφ− 5

8

)2 − (58)2 )− 5
]

= mg
[
− 12

( (
cosφ− 5

8

)2 )
+ 12×

(
5
8

)2 − 5
]

= mg
[
− 12

( (
cosφ− 5

8

)2 )− 5
16

]
This is always negative, so R can never be zero. The magnitude of the reaction force is
therefore

R = mg
[
12 cos2 φ− 15 cosφ+ 5

]
and the magnitude is always greater than or equal to 5mg

16 .
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5 You can find the volume of the sphere below the surface of the liquid by considering a volume
of revolution. Since x will be involved in one of the limits, it is best to use t2 + y2 = R2 or
similar. The picture below shows the section we are revolving to find the required volume.

The required volume is given by:

π

∫ R

x
R2 − t2 dt = π

[
R2t− 1

3 t
3
]R
x

= π
[
R3 − 1

3R
3
]
− π

[
R2x− 1

3x
3
]

=
π

3

[
2R3 − 3R2x+ x3

]

The weight of the sphere (which has density ρs) is:

W =
4

3
πR3ρsg

and the upward force is given by:

U =
π

3

[
2R3 − 3R2x+ x3

]
ρg

Using “F = ma”, and considering the fact that as the sphere moves downwards into the
liquid, x decreases and U will increase (and act to increase x again) we have:

4

3
πR3ρsẍ =

π

3

[
2R3 − 3R2x+ x3

]
ρg − 4

3
πR3ρsg

=⇒ 4

3
πR3ρs (ẍ+ g) =

π

3

[
2R3 − 3R2x+ x3

]
ρg

=⇒ 4R3ρs (ẍ+ g) =
[
2R3 − 3R2x+ x3

]
ρg (†)
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At equilibrium we have ẍ = 0 (and we are told this happens when x = 1
2R, and so:

4R3ρsg =
[
2R3 − 3R2 × 1

2R+
(
1
2R
)3 ]

ρg

4ρs =
[
2− 3

2 + 1
8

]
ρ

4ρs =
5

8
ρ

ρs =
5

32
ρ

When the oscillations are small then x remains close to 1
2R. Let x = u+ 1

2R, where |u| << R1.

Substituting x = u+ 1
2R and ρs = 5

32ρ into (†) gives:

4R3 × 5

32
ρ (ü+ g) =

[
2R3 − 3R2

(
1
2R+ u

)
+
(
1
2R+ u

)3 ]
ρg

R3 × 5

8
ρ (ü+ g) =

[
2R3 − 3

2R
3 − 3R2u+ 1

8R
3 + 3

4R
2u+ 3

2Ru
2 + u3

]
ρg

5R3ρ(ü+ g) =
[
16R3 − 12R3 − 24R2u+R3 + 6R2u+ 12Ru2 + u3

]
ρg

5R3ρü+����5R3ρg = ����5R3ρg − 18R2uρg + 12Ru2ρg + u3ρg

5ü = −18g
u

R
+ 12g

( u
R

)2
+ g

( u
R

)3
Then, since

∣∣∣ u
R

∣∣∣ << 1 we can ignore the squared and higher terms so:

ü = −18g

5R
u

which is the standard equation for simple harmonic motion. The oscillations of the motion have
period:

2π

√
5R

18g
= π

√
20R

18g
=
π

3

√
10R

g

(Any of these answers, or any other equivalent ones, would have been fine!)

1This means that “u is very much smaller than R”. It can perhaps more usefully be written as
∣∣∣ u
R

∣∣∣ << 1.
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