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1 Preparation

(i) Differentiating gives
dy

dx
= 1

2x
− 1

2 , so the gradient at the point (4, 2) is m = 1
2 ×

1
2 = 1

4 .

Using y − y1 = m(x− x1) gives y − 2 = 1
4(x− 4) i.e. y = 1

4x+ 1.

(ii) Substituting for y into the first equation gives:

ax+ b(2ax) = c

x
(
a+ 2ab

)
= c

x =
c

a(1 + 2b)

y = 2ax =
2c

1 + 2b

(iii) The gradient of the curve at the point (p, p2) is 2p, so the gradient of the normal will
be −12p . The equation of the normal is:

y − p2 = −1
2p (x− p)

2py − 2p3 = −x+ p

2py + x = 2p3 + p

(iv) Expanding in a table gives:

a2 ab b2

a a3 ��a2b ��ab2

−b ���−a2b ���−ab2 −b3

and so (a− b)(a2 + ab+ b2) = a3 − b3.
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2 The STEP I question

The equation for C can be written as y =
1

2x
, so

dy

dx
= − 1

2x2
. The equation of the tangent

to P is:

y − 1
2p = − 1

2p2
(x− p)

y = − 1
2p2
x+ 1

p

Similarly the equation of the tangent to Q is y = − 1
2q2
x+ 1

q .

Where the tangents meet we have:

− 1
2p2
x+ 1

p = − 1
2q2
x+ 1

q

x
(

1
2q2
− 1

2p2

)
= 1

q −
1
p

x

(
p2 − q2

2p2q2

)
=
p− q
pq

x

(
(p− q)(p+ q)

2(pq)2

)
=
p− q
pq

x

(
p+ q

2pq

)
= 1 since p 6= q

(we are told that the points are distinct)

x =
2pq

p+ q

The y coordinate is given by

y = − 1

2p2
x+

1

p

= − 1

�2p�2
× �2�pq

p+ q
+

1

p

=
p+ q

p(p+ q)
− q

p(p+ q)

=
p

p(p+ q)
=

1

p+ q

The gradient of the normal at P is 2p2, so the equation of the normal at P is:

y − 1
2p = 2p2 (x− p)

y = 2p2x+ 1
2p − 2p3

and the normal to Q has equation y = 2q2x+ 1
2q − 2q3.
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Where the normals intersect we have:

2p2x+ 1
2p − 2p3 = 2q2x+ 1

2q − 2q3

(2p2 − 2q2)x = 2p3 − 2q3 + 1
2q −

1
2p

2(p+ q)(p− q)x = 2(p− q)(p2 + pq + q2) +
p− q
2pq

2(p+ q)x = 2(p2 + pq + q2) +
1

2pq
since p 6= q

x =
p2 + pq + q2

p+ q
+

1

4pq(p+ q)

Since pq = 1
2 we have 2pq = 1. We also have p2 + q2 + pq = (p + q)2 − pq. x can therefore

be written as:

x =
p2 + pq + q2

p+ q
+

1

4pq(p+ q)

=
(p+ q)2 − pq

p+ q
+

1

2(p+ q)

=
2(p+ q)2 −��2pq + �1

2(p+ q)

= p+ q

The y coordinate of N is given by:

y = 2p2x+ 1
2p − 2p3

= 2p2(p+ q) + 1
2p − 2p3

= 2p2q + 1
2p

= 2pq × p+ q

= p+ q

Hence N = (p + q, p + q), so it lies on the line y = x. Using our previous answer for the

coordinates of T with the condition that 2pq = 1 gives T =

(
1

p+ q
,

1

p+ q

)
, so also lies on

the line y = x. The distance of T from the origin is

√
2

p+ q
and the distance of N from the

origin is
√

2(p+ q), therefore the product of the distances is constant (it is 2).
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2012 S1 Q8

3 Preparation

(i)
d

dx
(xv) = v + x

dv

dx
. Using this in (∗) gives:

x
dy

dx
− y = x3

x

(
v + x

dv

dx

)
− xv = x3

x2
dv

dx
= x3

dv

dx
= x since x 6= 0

We therefore have v = 1
2x

2 + c and so y = 1
2x

3 + cx. If you then substitute this back
into (∗) you can verify that it satisfies the original equation.

(ii) (a) Rearranging gives: ∫
1

y + 1
dy =

∫
1

x
dx

ln |y + 1| = ln |x|+ c

y + 1 = Ax

y = Ax− 1

(b) Here we have: ∫
1

tan y
dy =

∫
1 dx∫

cos y

sin y
dy = x+ c

ln | sin y| = x+ c

sin y = Aex

(iii) We need A and B such that A(x + 2) + B(x + 1) ≡ x. Substituting x = −1 gives
A = −1 and substituting x = −2 gives B = 2. The integral therefore becomes:∫ 2

1

2

x+ 2
− 1

x+ 1
dx = [2 ln(x+ 2)− ln(x+ 1)]21

= (2 ln 4− ln 3)− (2 ln 3− ln 2)

= ln(42 × 2)− ln(33)

= ln
(
32
27

)
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4 The STEP I question

(i) Using the substitution y = xv gives:

x× xv ×
(
v + x

dv

dx

)
+ (xv)2 − 2x2 = 0

x2v2 + x3v
dv

dx
+ (xv)2 − 2x2 = 0

v2 + xv
dv

dx
+ v2 − 2 = 0 since x 6= 0

xv
dv

dx
+ 2v2 − 2 = 0 .

Separating variables: ∫
v

2− 2v2
dv =

∫
1

x
dx

1
2

∫
v

1− v2
dv = ln |x|+ c

1
2 ×−

1
2 ln |1− v2| = ln |x|+ c

− ln |1− v2| = 4 ln |x|+ k

1

1− v2
= Ax4

1− v2 =
1

Ax4

x4 − x4v2 =
1

A

x4 − x2y2 =
1

A

x2(y2 − x2) = − 1

A
= C .

There are lots of ways to tackle
∫

v
1−v2 dv, one is to use partial fractions and another

is to notice that the numerator is very similar to the derivative of the denominator,

and then use
∫ f′(x)

f(x) dx = ln |f(x)|+ c.

(ii) You are left to your own devices here a little. One possible starting point is to use
y = xv again (and if that doesn’t work, hopefully this will give some insight into which
substitution will be useful).
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Using y = xv we have:

xv ×
(
v + x

dv

dx

)
+ 6x+ 5xv = 0

v2 + xv
dv

dx
+ 6 + 5v = 0 since x 6= 0

xv
dv

dx
= −

(
v2 + 5v + 6

)
v

v2 + 5v + 6

dv

dx
= −1

x∫
v

(v + 2)(v + 3)
dv = − ln |x|+ c∫

3

v + 3
− 2

v + 2
dv = − ln |x|+ c

3 ln |v + 3| − 2 ln |v + 2| = − ln |x|+ c

(v + 3)3

(v + 2)2
=
A

x

(xv + 3x)3

x(xv + 2x)2
=
A

x

(y + 3x)3

(y + 2x)2
= A

The penultimate line was obtained by multiplying top and bottom of the fraction by
x3. The final answer can be written as (y + 3x)3 = A(y + 2x)2 if you like.
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5 Preparation

(i) Using the sum of an infinite Geometric Progression we have:

1 + p+ p2 + p3 + . . . =
1

1− p
.

Substituting p = 1
2 gives 1 + 1

2 +
(
1
2

)2
=

1

1− 1
2

= 2.

(ii) We have:
1 + p+ p2 + p3 + . . . = (1− p)−1 .

Differentiating both sides of this gives:

0 + 1 + 2p+ 3p2 + . . . = (1− p)−2 .

Then substituting p = 1
2 gives:

1 + 2
2 + 3

4 + 4
8 + . . . =

1(
1− 1

2

)2 = 4 .

(iii) We have:
(1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5 .

Integrating gives:

1
6(1 + x)6 = x+ 5

2x
2 + 10

3 x
3 + 10

4 x
4 + x5 + 1

6x
6 + c .

Substituting x = 0 gives c = 1
6 (you can substitute any value of x you like, but the

others are a lot more work!).

If you then multiply throughout by 6 you get the (hopefully not too surprising result):

(1 + x)6 = 1 + 6x+ 15x2 + 20x3 + 15x4 + 6x5 + x6 .

This was a slightly contrived question, there is no real reason to do this other than to
practice something that you will need for the STEP question!

6 The STEP I question

For this question you are asked to consider the expansion of (1 + x)n in the “stem” of the
question. This means that this will probably be useful in all of the parts of the question.

We have:

(1 + x)n =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 +

(
n

3

)
x3 + . . .+

(
n

n

)
xn (*)
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(i) Substituting x = 1 into (∗) gives:(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
+ . . .+

(
n

n

)
= (1 + 1)n = 2n .

(ii) Differentiating (∗) with respect to (WRT) x gives:

n(1 + x)n−1 =

(
n

1

)
+

(
n

2

)
× 2x+

(
n

3

)
× 3x2 + . . .+

(
n

n

)
× nxn−1

and substituting x = 1 gives the required result.

(iii) Integrating (∗) WRT x gives:

1
n+1(1 + x)n+1 =

(
n

0

)
x+

(
n

1

)
1
2x

2 +

(
n

2

)
1
3x

3 +

(
n

3

)
1
4x

4 + . . .+

(
n

n

)
1

n+1x
n+1 + c

Substituting x = 0 gives c = 1
n+1 . Then substitute x = 1 to get:(

n

0

)
+

(
n

1

)
1
2 +

(
n

2

)
1
3 +

(
n

3

)
1
4 + . . .+

(
n

n

)
1

n+1 + 1
n+1 = 1

n+1(1 + 1)n+1(
n

0

)
+ 1

2

(
n

1

)
+ 1

3

(
n

2

)
+ 1

4

(
n

3

)
+ . . .+ 1

n+1

(
n

n

)
= 1

n+1(2)n+1 − 1
n+1

= 1
n+1

(
2n+1 − 1

)
(iv) This last part is a little trickier. The “2n−2” suggests that a second derivative of (∗)

might be useful:

2

(
n

2

)
+ 3× 2

(
n

3

)
x+ 4× 3

(
n

4

)
x2 + . . .+ n(n− 1)

(
n

n

)
xn−2 = n(n− 1)(1 + x)n−2

x = 1 =⇒ 2

(
n

2

)
+ 3× 2

(
n

3

)
+ 4× 3

(
n

4

)
+ . . .+ n(n− 1)

(
n

n

)
= n(n− 1)(2)n−2

The required result has a
(
n
1

)
term as well, so try adding the result from part (ii) to

this. This gives:(
n

1

)
+2

(
n

2

)
+ 3

(
n

3

)
+ 4

(
n

4

)
+ . . . + n

(
n

n

)
+2

(
n

2

)
+ 3× 2

(
n

3

)
+ 4× 3

(
n

4

)
+ . . .+ n(n− 1)

(
n

n

)
= n2n−1 + n(n− 1)2n−2(

n

1

)
+22

(
n

2

)
+ 32

(
n

3

)
+ 42

(
n

4

)
+ . . . + n2

(
n

n

)
= 2n−2

[
2n+ n(n− 1)

]
(
n

1

)
+22

(
n

2

)
+ 32

(
n

3

)
+ 42

(
n

4

)
+ . . . + n2

(
n

n

)
= 2n−2 [n(n+ 1)]

Note that n+ n(n− 1) = n+ n2 − n = n2.
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7 Preparation

(i) We have (2a+ 1)(2b+ 1) = 4ab+ 2a+ 2b+ 1 = 2
[
2ab+ a+ b

]
+ 1 which has the form

2k + 1 and hence is odd.

(ii) (2a+ 1) + (2b+ 1) = 2a+ 2b+ 2 = 2
[
a+ b+ 1

]
, which is of the form 2k and so is even.

(iii)
(2k + 1)2 − (2k − 1)2 =

[
4k2 + 4k + 1

]
−
[
4k2 − 4k + 1

]
= 8k

Hence any number of the form 8k can be written in the form (2k+1)2−(2k−1)2, which
is the difference of two odd (and consecutive!) squares. E.g. 8 = 32− 12, 16 = 52− 32,
88 = 232 − 212.

(iv) You could start on either side to show this identity. If starting with the left hand side,
using difference of two squares is a good starting point.

(2a+ 1)2 − (2b+ 1)2 =
[
(2a+ 1) + (2b+ 1)

][
(2a+ 1)− (2b+ 1)

]
= (2a+ 2b+ 2)(2a− 2b)

= 2(a− b)× 2(a+ b+ 1)

= 4(a− b)(a+ b+ 1)

The difference between two odd squares must therefore be divisible by 4 (as it has the
form 4 × K). However we are asked to show that it is divisible by 8. We need to
consider different cases here.

• If a and b are both even, then (a− b) is even and hence has a factor of 2.

• If a and b are both odd, then (a− b) is even and hence has a factor of 2

• If one of a and b is even and the other odd, then (a+ b+ 1) is even and hence has
a factor of 2.

So for all possible values of a and b, (a − b)(a + b + 1) has a factor of 2 and hence
4(a− b)(a+ b+ 1) is divisible by 8.

(v) Looking at a few values (such as 42−22 = 12, 102−42 = 84), it looks as if the difference
of two even squares is divisible by 4.

Consider (2a)2 − (2b)2:

(2a)2 − (2b)2 = 4a2 − 4b2

= 4(a+ b)(a− b)

Hence the difference of two even squares is a multiple of 4, but if one of a, b is odd
and the other even then (a+ b)(a− b) is odd.

(vi) 582 − 422 = (58 + 42)(58− 42) = 100× 16 = 1600.

(vii) Listing systematically gives a = 12, b = 1, a = 6, b = 2 and a = 4, b = 3.
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8 The STEP I question

(i) 3 = 22 − 12, 5 = 32 − 22, 8 = 32 − 12, 12 = 42 − 22, 16 = 52 − 32.

(ii) Looking at the first two numbers in part (i) gives a suggestion as to how to attempt
this question. You could also write down a few more examples of writing odd numbers
as a difference of two squares to help you.

(k + 1)2 − (k)2 = k2 + 2k + 1 − k2 = 2k + 1 and hence any odd number (2k + 1) can
be written as the difference of two squares ((k + 1)2 − k2).

(iii) Looking at part (i) is appears that all the numbers of the form 4k are formed by
considering squares of numbers of the form a and a + 2. It is actually a bit easier to
show this if we consider k + 1 and k − 1 instead.

(k + 1)2 − (k − 1)2 = (k2 + 2k + 1)− (k2 − 2k + 1) = 4k, hence anything of the form
4k can be written as the difference of two squares.

(iv) We have a2 − b2 = (a+ b)(a− b). The different cases are:

• a and b are both even. Then both a + b and a − b are even and so both have a
factor of 2. a2 − b2 is hence divisible by 4.

• a and b are both odd. Then both a + b and a − b are even and so both have a
factor of 2. a2 − b2 is hence divisible by 4

• One of a and b is even and the other is odd. Then both a + b and a − b are odd
and so neither have a factor of 2. a2 − b2 is hence odd.

A number of the form 4k+ 2 is even, but is not divisible by 4 so fits none of the cases
above. Hence a number of the form 4k + 2 cannot be written as the difference of two
squares.

(v) I started by trying an example. Let p = 5 and q = 3, then pq = 15 which can be
42 − 12 or 82 − 72.

If p and q are both primes greater than 2 then they are both odd. This means that
p+q
2 , p−q

2 , pq+1
2 and pq−1

2 are all integers.

Consider: (
p+ q

2

)2

−
(
p− q

2

)2

=
p2 + 2pq + q2

4
− p2 − 2pq + q2

4

= pq

And also: (
pq + 1

2

)2

−
(
pq − 1

2

)2

=
(pq)2 + 2pq + 1

4
− (pq)2 − 2pq + 1

4

= pq
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Hence pq can be written as a difference of two squares in two ways, as these two ways
are different. You can show that they are different by considering the first square in
each case. Since p and q are both greater than 2, pq + 1 > p+ q, hence the two ways
are different.1.

I found these two ways by considering (p+ q)2− (p− q)2 and (pq+ 1)2− (pq− 1)2 and
then scaling to get 1pq.

However, we need to show that pq can be written as a difference of two squares in
exactly two ways, i.e. that no other way is possible.

Consider pq = a2 − b2 = (a + b)(a − b). The only factors possible are p and q, so
(assuming that p > q) we have either:

• a+ b = p and a− b = q

• a+ b = pq and a− b = 1

These are the only options, so there are only two ways of writing pq as a difference of
two squares.

Note that if p = q, then the ways to write p×p = p2 are p2−02 and
(
p2+1
2

)2
−
(
p2−1
2

)2
.

This is not the most elegant solution, a better one would be to start with pq = a2− b2
and then find a and b in terms of p and q. However, I thought it might be useful to
show an “unpolished” solution.

If q = 2, and p is a prime greater than 2 (hence p is odd) then p+q
2 , p−q2 , pq+1

2 and pq−1
2

are not integers, so it is not possible to write pq as a difference of two squares.

(vi) 675 can be written as 1× 33× 52, so we want to find a and b such that (a+ b)(a− b) =
1× 33 × 52. We also have a+ b > a− b. The options are:

a+ b a− b
33 × 52 1
32 × 52 3
33 × 5 5
3× 52 32

32 × 5 3× 5
33 52

Hence there are 6 different ways to write 675 as the difference of two squares.

Note that we don’t actually have to find the ways, we just have to find out how many
there are!

1You could try solving pq + 1 = p + q which can be rearranged to give pq − p − q + 1 = 0, which factorises to
(p − 1)(q − 1) = 0, i.e. we must have either p = 1 or q = 1 (or both). This is not possible as p and q are prime
numbers bigger than 2.
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2005 S1 Q4

9 Preparation

(i) Let φ = 3θ, so that 0 6 φ < 6π. The solutions to tanφ = 1 are φ = 1
4π,

5
4π,

9
4π, . . .

21
4 π

which gives θ = 1
12π,

5
12π,

9
12π,

13
12π,

17
12π,

21
12π.

(ii) If sin θ = 1
2 and cos θ < 0 then one solution is θ = 5

6π. However we can add multiples
of 2π to this so the possible values are θ = 5

6π ± 2nπ.

(iii)

sin 3θ = sin(2θ + θ)

= sin 2θ cos θ + cos 2θ sin θ

= 2 sin θ cos2 θ +
(
cos2 θ − sin2 θ

)
sin θ

= 3 sin θ cos2 θ − sin3 θ

Replacing θ with 1
2π − θ gives:

sin 3
(π

2
− θ
)

= 3 sin
(π

2
− θ
)

cos2
(π

2
− θ
)
− sin3

(π
2
− θ
)

sin

(
3π

2

)
cos 3θ − cos

(
3π

2

)
sin 3θ = 3 cos θ sin2 θ − cos3 θ

− cos 3θ = 3 cos θ sin2 θ − cos3 θ

cos 3θ = cos3 θ − 3 cos θ sin2 θ

(iv) (a) Here one root is x = 1. Factorising gives (x− 1)(x2 − x− 12) = 0 and so
(x− 1)(x− 4)(x+ 3) = 0 and the solutions are x = −3, x = 1, x = 4.

(b) Here one root is x = −1. Factorising gives (x + 1)(12x2 − x − 1) = 0 and so
(x+ 1)(4x+ 1)(3x− 1) = 0 and the solutions are x = −1, x = −1

4 , x = 1
3 .

Another way to solve this equation is to note that if we substitute x = −1
t into the

equation in (a) we get this second equation. Hence the roots are given by t = − 1
x .

(c) One root here is x = 1
2 , and so we have (2x − 1)(x2 − 2x − 1) = 0. Using the

quadratic formula gives the other two root as x = 1±
√

2.

(v) You can consider the two parts of the inequality separately. Firstly we have 8 < 5
√

3
as 64 < 25 × 3 hence 8 − 5

√
3 < 0. Now consider −1 < 8 − 5

√
3. This is equivalent

to 5
√

3 < 9, which is true as 25× 3 < 81 and so we know that −1 < 8− 5
√

3. Hence
−1 < 8− 5

√
3 < 0.
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10 The STEP I question

(i) Using cos2 θ+ sin2 θ = 1 gives sin2 θ = 16
25 . For the given range of θ we know that sin θ

must be negative and so sin θ = −4
5 .

We then have sin 2θ = 2 cos θ sin θ = 2× 3
5 ×−

4
5 = −24

25 .

cos 3θ = cos θ cos 2θ − sin θ sin 2θ

= cos θ
(
cos2 θ − sin2 θ

)
− sin θ sin 2θ

= 3
5

(
9
25 −

16
25

)
−
(
−4

5 ×−
24
25

)
= −3×7+4×24

125

= −117
125

(ii)

tan 3θ = tan (2θ + θ)

=
tan 2θ + tan θ

1− tan 2θ × tan θ

=
2 tan θ

1−tan2 θ + tan θ

1− 2 tan θ
1−tan2 θ × tan θ

=
2 tan θ + tan θ

(
1− tan2 θ

)
1− tan2 θ − 2 tan2 θ

=
3 tan θ − tan3 θ

1− 3 tan2 θ

A perhaps simpler way of showing this identity is to use tan 3θ = sin 3θ
cos 3θ and then use

the identities found question 9 (iii).

If tan 3θ =
11

2
, and if we let tan θ = t, then we have:

3t− t3

1− 3t
=

11

2

6t− 2t3 = 11− 33t2

2t3 − 33t2 − 6t+ 11 = 0

(2t− 1)(t2 − 16t− 11) = 0

This gives tan θ = 1
2 or tan θ = 8 ± 5

√
3. If

π

4
6 θ 6

π

2
then we have tan θ > 1, and

hence the solution is tan θ = 8 + 5
√

3.
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(i) (a) To find
−−→
AB, consider how to get from point A to point B. You could travel from

A to the origin and then to point B which gives us
−−→
AB =

−→
AO +

−−→
OB = −a + b.

(b) We have
−−→
OC =

−→
OA+ 2

3

−−→
AB and so c = a + 2

3 (b− a) = 1
3a + 2

3b.

(c)

(ii) (a) 2⊕ 3 = 6− 2 = 4 and 3⊕ 2 = 6− 3 = 3.

(b) a⊕ b = b⊕ a ⇐⇒ ab− a = ba− b ⇐⇒ a = b.

(c) 3⊕ (5⊕ 1) = −3 and (3⊕ 5)⊕ 1 = 0.

(d) We need:

a⊕ (b⊕ c) 6= (a⊕ b)⊕ c
a⊕ (bc− b) 6= (ab− a)⊕ c
a(bc− b)− a 6= (ab− a)c− (ab− a)

��abc−��ab− a 6= ��abc− ac−��ab+ a

ac− 2a 6= 0

a(c− 2) 6= 0

So the conditions are a 6= 0 and c 6= 2.

Pure STEP 1 Solutions 14

https://maths.org/step/


maths.org/step

12 The STEP I question

(i) The points are distinct iff:

X ∗ Y 6= Y ∗X
λx + (1− λ)y 6= λy + (1− λ)x

2λx− 2λy − x + y 6= 0

(2λ− 1)(x− y) 6= 0

We are told that X and Y are distinct, so we have x − y 6= 0. Therefore X ∗ Y and
Y ∗X are distinct unless λ = 1

2 .

(ii)

(X ∗ Y ) ∗ Z 6= X ∗ (Y ∗ Z)[
λx + (1− λ)y

]
∗ Z 6= X ∗

[
λy + (1− λ)z

]
λ
[
λx + (1− λ)y

]
+ (1− λ)z 6= λx + (1− λ)

[
λy + (1− λ)z

]
λ(1− λ)y + (1− λ)z 6= λ(1− λ)x + (1− λ)

[
λy + (1− λ)z

]
(1− λ)

[
λy + z

]
6= (1− λ)

[
λx + λy + z− λz

]
0 6= (1− λ)

[
λx− λz

]
0 6= λ(1− λ)(x− z)

Hence for (X ∗ Y ) ∗Z and X ∗ (Y ∗Z) to be distinct we need λ 6= 0, λ 6= 1 and x 6= z.

(iii) We have (X ∗ Y ) ∗ Z = λ2x + λ(1− λ)y + (1− λ)z from part (ii).

We also have:

(X ∗ Z) ∗ (Y ∗ Z) =
[
λx + (1− λ)z

]
∗
[
λy + (1− λ)z

]
= λ

[
λx + (1− λ)z

]
+ (1− λ)

[
λy + (1− λ)z

]
= λ2x + λ(1− λ)y + (1− λ)

(
λ+ (1− λ)

)
z

= λ2x + λ(1− λ)y + (1− λ)z

which is the same as (X ∗ Y ) ∗ Z.

In a similar way, you can show that X ∗ (Y ∗ Z) = (X ∗ Y ) ∗ (X ∗ Z) (you need to
expand each side and show that they are the same).
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(iv) We have:

P1 = λx + (1− λ)y

P2 =
(
λx + (1− λ)y

)
∗ Y

= λ2x + λ(1− λ)y + (1− λ)y

= λ2x + (λ− λ2 + 1− λ)y

= λ2x + (1− λ2)y
P3 =

(
λ2x + (1− λ2)y

)
∗ Y

= λ3x + λ(1− λ2)y + (1− λ)y

= λ3x + (λ− λ3 + 1− λ)y

= λ3x + (1− λ3)y

It looks as if Pn = λnx + (1− λn)y. We know this is true when n = 1, 2, 3.

Assume that the conjecture is true when n = k, so we have Pk = λkx +
(
1− λk

)
y.

Now consider n = k + 1. We have:

Pk+1 =
(
λkx + (1− λk)y

)
∗ Y

= λ
(
λkx + (1− λk)y

)
+ (1− λ)y

= λk+1x +
(
λ− λk+1 + 1− λ

)
y

= λk+1x +
(
1− λk+1

)
y

which has the required form with n = k + 1. Hence if the conjecture is true for n = k
then it is true for n = k+ 1, and since it is true for n = 1, 2, 3 it is true for all integers
n > 1.

Hence Pn = λnx +
(
1 − λn

)
y and the point Pn divides the line segment XY in the

ratio λn : 1− λn.
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(i) 2
(
1− cos2 x

)
+ 3 cosx = 0

2 cos2 x− 3 cosx− 2 = 0

(2 cosx+ 1)(cosx− 2) = 0

cosx = −1
2

So we have x =
2π

3
and x =

4π

3
.

(ii) sin2 x = 1
2(1 − cos 2x), which we can sketch as a series of translations of y = sinx

(thinking about it like this avoids overly “spiky” bits). Your picture should look like
the following:

(iii) f ′(x) = −2 sin 2x ecos 2x and f ′′(x) = −4 cos 2x ecos 2x + 4 sin2 2x ecos 2x.

(iv) f ′(x) = − sin(tanx)× sec2 x and
f ′′(x) = − sin(tanx)× 2 sec3 x sinx− cos(tanx)× sec4 x

= − sec2 x
(

sin(tanx)× 2 tanx+ sec2 x cos(tanx)
)

.

(v) cotα =
cosα

sinα

=
sin
(
π
2 − α

)
cos
(
π
2 − α

)
= tan

(
π
2 − α

)
(vi) sec2 x = 2 tanx

tan2 x+ 1 = 2 tanx

tanx− 2 tanx+ 1 = 0

(tanx− 1)2 = 0

So tanx = 1 and x = π
4 or x = 5π

4 .
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(i) First note that 2
3 cos2 x = 1

3 (cos 2x+ 1) which will help you get the correct “shape” of
this curve. You should have a sketch looking something like the following:

For the next part f ′(x) = 2
3 cosx e

2
3
sinx and f ′′(x) = 4

9 cos2 x e
2
3
sinx − 2

3 sinx e
2
3
sinx.

Hence f(x) is convex when f ′′(x) > 0, i.e.:

4
9 cos2 x e

2
3
sinx − 2

3 sinx e
2
3
sinx > 0

2
3e

2
3
sinx

(
2
3 cos2 x− sinx

)
> 0

2
3 cos2 x− sinx > 0 since 2

3e
2
3
sinx > 0

The inequality 2
3 cos2 x − sinx > 0 corresponds to the regions of the graph where the

blue curve (y = 2
3 cos2 x) is higher than the red curve (y = sinx). We need to find the

intersections of these two, i.e. solve 2
3 cos2 x = sinx.

2
3 cos2 x = sinx

2
3

(
1− sin2 x

)
= sinx

2− 2 sin2 x = 3 sinx

2 sin2 x+ 3 sinx− 2 = 0

(2 sinx− 1)(sinx+ 2) = 0

So the intersections are at x = π
6 and x = 5π

6 and so the curve f(x) is convex when
0 < x < π

6 and 5π
6 < x < 2π.

(ii) g′(x) = −k sec2 x e−k tanx and g′′(x) = k2 sec4 x e−k tanx − 2k sinx sec3 x e−k tanx. The
second derivative can be written as g′′(x) = k sec2 x e−k tanx

[
k sec2 x − 2 sinx secx

]
.
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Since k > 0 (as k = sin 2α and 0 < α < 1
4π), sec2 x > 0 and e−k tanx > 0, g(x) will be

convex if and only if:

k sec2 x− 2 sinx secx > 0

k − 2 sinx cosx

cos2 x
> 0

k − sin 2x > 0

sin 2α− sin 2x > 0

Since 0 < α < 1
4π, sin 2α > 0. The graph of y = sin 2x for 0 < x < 1

2π looks like:

From this graph you can see that sin 2α − sinx > 0 when 0 < x < α and also when
1
2π − α < x < 1

2π.
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(i) There are lots of ways you can integrate this. You could use a substitution (such as
y = x2, y = 1− x2 or y = sin θ), you could use partial fractions, or you could use the

result

∫
f ′(x)

f(x)
dx = ln |f(x)|+ c (which is essentially a substitution, but it is well worth

knowing this standard result). The answer is −1
2 ln |1 − x2| + c (your answer might

look a little different depending on which method you use but should be equivalent to
this).

(ii) Separating the variables gives:∫
y−2 dy =

∫
x−1 dx

−y−1 = lnx+ c

−1

2
= c substituting x = 1, y = 2

−1

y
= lnx− 1

2

−2 = 2y lnx− y
2 = y (1− 2 lnx)

y =
2

1− 2 lnx

To sketch the graph, note that x > 0 and we cannot have 2 lnx = 1 i.e. x2 6= e. As
x→ e

1
2 from below we have y →∞ and as x→ e

1
2 from above we have y → −∞. As

x → 0 we have y → 0 and as x → ∞ we have y → 0. When 0 < x < e
1
2 y is positive

and when x > e
1
2 y is negative. You can also differentiate y and show that it is always

positive.

Check your graph by visiting Desmos.

(iii) Rearranging gives y2 = 3x(x2 − 1). For y to be real we need 3x(x2 − 1) > 0. The
easiest way to solve this is to sketch a graph of 3x(x+ 1)(x− 1) which will show you
that y is real when −1 6 x 6 0 or x > 1.
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16 The STEP I question

(i) Using the given substitution:

dy

dx
=
x

y
+
y

x

x
du

dx
+ u =

x

ux
+
ux

x

x
du

dx
=

1

u∫
udu =

∫
1

x
dx

1
2u

2 = lnx+ c
1
2 × 22 = c using x = 1, y = 2 =⇒ u = 2

1
2u

2 = lnx+ 2

u2 = 2 lnx+ 4

y2

x2
= 2 lnx+ 4

y2 = 2x2 lnx+ 4x2

y = x
√

4 + 2 lnx

(ii) Here it would be good if we could eliminate a term again. Try the substitution y = ux2

(y = ux will work, but does not led to as nice a differential equation).

dy

dx
=
x

y
+

2y

x

x2
du

dx
+ 2xu =

x

ux2
+

2ux2

x

x2
du

dx
=

1

ux∫
udu =

∫
x−3 dx

1
2u

2 = −1
2x
−2 + c

1
2 × 22 = −1

2 + c using x = 1, y = 2 =⇒ u = 2
1
2u

2 = −1
2x
−2 + 5

2

u2 = − 1

x2
+ 5

y2

x4
= 5− 1

x2

y2 = 5x4 − x2

y = x
√

5x2 − 1
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(iii) Here use y = ux2 again.

dy

dx
=
x2

y
+

2y

x

x2
du

dx
+ 2xu =

x2

ux2
+

2ux2

x

x2
du

dx
=

x2

ux2∫
udu =

∫
x−2 dx

1
2u

2 = −x−1 + c
1
2 × 22 = −1 + c using x = 1, y = 2 =⇒ u = 2

1
2u

2 = −x−1 + 3

u2 = −2

x
+ 6

y2

x4
= 6− 2

x
y2 = 6x4 − 2x3

y = x
√

6x2 − 2x
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