

STEP Support Programme

STEP 2 Trigonometry Questions

1 2010 S2 Q2

Prove that

$$\cos 3x = 4\cos^3 x - 3\cos x.$$

Find and prove a similar result for $\sin 3x$ in terms of $\sin x$.

(i) Let

$$I(\alpha) = \int_0^{\alpha} (7\sin x - 8\sin^3 x) dx.$$

Show that

$$I(\alpha) = -\frac{8}{3}c^3 + c + \frac{5}{3} \,,$$

where $c = \cos \alpha$. Write down one value of c for which $I(\alpha) = 0$.

(ii) Eustace believes that

$$\int \sin^n x \, \mathrm{d}x = \frac{\sin^{n+1} x}{n+1}$$

for $n=1,\ 2,\ 3,\ldots$ Show that Eustace would obtain the correct value of $\mathrm{I}(\beta)$, where $\cos\beta=-\frac{1}{6}.$

Find all values of α for which he would obtain the correct value of $I(\alpha)$.

2 2009 S2 Q3

Prove that

$$\tan\left(\frac{1}{4}\pi - \frac{1}{2}x\right) \equiv \sec x - \tan x. \tag{*}$$

(i) Use (*) to find the value of $\tan \frac{1}{8}\pi$. Hence show that

$$\tan \frac{11}{24}\pi = \frac{\sqrt{3} + \sqrt{2} - 1}{\sqrt{3} - \sqrt{6} + 1} \; .$$

(ii) Show that

$$\frac{\sqrt{3} + \sqrt{2} - 1}{\sqrt{3} - \sqrt{6} + 1} = 2 + \sqrt{2} + \sqrt{3} + \sqrt{6}.$$

(iii) Use (*) to show that

$$\tan\frac{1}{48}\pi = \sqrt{16 + 10\sqrt{2} + 8\sqrt{3} + 6\sqrt{6}} - 2 - \sqrt{2} - \sqrt{3} - \sqrt{6}.$$

3 2007 S2 Q3

By writing $x = a \tan \theta$, show that, for $a \neq 0$, $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + \text{constant}$.

(i) Let
$$I = \int_0^{\frac{1}{2}\pi} \frac{\cos x}{1 + \sin^2 x} dx$$
.

- (a) Evaluate I.
- (b) Use the substitution $t = \tan \frac{1}{2}x$ to show that $\int_0^1 \frac{1-t^2}{1+6t^2+t^4} dt = \frac{1}{2}I$.
- (ii) Evaluate $\int_0^1 \frac{1-t^2}{1+14t^2+t^4} dt$.

4 2011 S2 Q4

(i) Find all the values of θ , in the range $0^{\circ} < \theta < 180^{\circ}$, for which $\cos \theta = \sin 4\theta$. Hence show that

$$\sin 18^\circ = \frac{1}{4} \left(\sqrt{5} - 1 \right).$$

(ii) Given that

$$4\sin^2 x + 1 = 4\sin^2 2x\,,$$

find all possible values of $\sin x$, giving your answers in the form $p+q\sqrt{5}$ where p and q are rational numbers.

(iii) Hence find two values of α with $0^{\circ} < \alpha < 90^{\circ}$ for which

$$\sin^2 3\alpha + \sin^2 5\alpha = \sin^2 6\alpha .$$

