

STEP Support Programme

STEP 2 Miscellaneous Topic Notes

Factor theorem: ax + b is a factor of the polynomial f(x) if and only if $f\left(-\frac{b}{a}\right) = 0$.

Remainder Theorem: The remainder when you divide the polynomial f(x) by (ax+b) is $f\left(-\frac{b}{a}\right)$.

Expansions

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + \binom{n}{n-1}ab^{n-1} + b^n$$

Where $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ and n is a positive integer.

 $(1+x)^k = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \cdots$ where k is a rational number and |x| < 1.

Arithmetic series

Recurrence relation: $t_n = t_{n-1} + d$

 n^{th} term: $t_n = a + (n-1)d$

Sum of *n* terms: $S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n(2a+(n-1)d)$

Sum of natural numbers: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Geometric series

Recurrence relation: $t_n = r \times t_{n-1}$ n^{th} term: $t_n = a \times r^{n-1}$ Sum of n terms: $S_n = \frac{a(r^n - 1)}{r - 1} = \frac{a(1 - r^n)}{1 - r}$ Infinite sum: $S_{\infty} = \frac{a}{1 - r}$ for |r| < 1

Exponential series
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!} + \dots$$

Coordinate geometry

Gradient between
$$(x_1, y_1)$$
 and (x_2, y_2) : $m = \frac{y_2 - y_1}{x_2 - x_1}$

Distance between
$$(x_1, y_1)$$
 and (x_2, y_2) : $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint of
$$(x_1, y_1)$$
 and (x_2, y_2) : $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$

Equation of a straight line with gradient m passing through (x_1, y_1) : $y - y_1 = m(x - x_1)$

Equation of a circle radius R with centre (a,b): $(x-a)^2 + (y-b)^2 = R^2$