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2023 STEP 2 Worked Paper

General comments

These solutions have a lot more words in them than you would expect to see in an exam script and
in places I have tried to explain some of my thought processes as I was attempting the questions.
What you will not find in these solutions is my crossed out mistakes and wrong turns, but please
be assured that they did happen!

You can find the examiners report and mark schemes for this paper from the OCR website. These
are the general comments for the STEP 2023 exam from the Examiner’s report:

Many candidates were able to express their reasoning clearly and presented good so-
lutions to the questions that they attempted. There were excellent solutions seen for
all of the questions.

An area where candidates struggled in several questions was in the direction of the
logic that was required in a solution. Some candidates failed to appreciate that separate
arguments may be needed for the “if” and “only if” parts of a question and, in some
cases, candidates produced correct arguments, but for the wrong direction.

In several questions it was clear that candidates who used sketches or diagrams gen-
erally performed much better that those who did not. Sketches often also helped to
make the solution clearer and easier to understand.

Several questions on the STEP papers ask candidates to show a given result. Candi-
dates should be aware that there is a need to present sufficient detail in their solutions
so that it is clear that the reasoning is well understood.

The three main points to note are:

1. The difference between “if” and “only if” is not always understood. Some resources that
might help are:

� Assignment 10 from the STEP Support Programme Foundation Modules.

� This collection of NRICH problems.

2. Sketches are often useful! Definitely for mechanics, but also for many other questions as well.
They can also be used to support an argument.

3. If a question asks you “show that”, then you do need to fully support your argument. An
examiner cannot tell the difference between a candidate who did a load of algebra in their
head and one that just writes down the result they are aiming for without knowing how to
show it.

Please send any corrections, comments or suggestions to step@maths.org.
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Question 1

1 (i) Show that making the substitution x =
1

t
in the integral

∫ b

a

1

(1 + x2)
3
2

dx ,

where b > a > 0, gives the integral∫ b−1

a−1

−t
(1 + t2)

3
2

dt .

(ii) Evaluate:

(a)

∫ 2

1
2

1

(1 + x2)
3
2

dx ;

(b)

∫ 2

−2

1

(1 + x2)
3
2

dx .

(iii) (a) Show that∫ 2

1
2

1

(1 + x2)2
dx =

∫ 2

1
2

x2

(1 + x2)2
dx = 1

2

∫ 2

1
2

1

1 + x2
dx ,

and hence evaluate ∫ 2

1
2

1

(1 + x2)2
dx .

(b) Evaluate ∫ 2

1
2

1− x
x(1 + x2)

1
2

dx .

Examiner’s report

The first part of this question was often completed well, although candidates should note that in
questions where the result is given it is important to show enough detail in the solution. Weaker
candidates failed to change the limits or did not differentiate 1

x correctly when completing the
substitution.
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Most candidates realised that part (ii)(a) could be completed by applying the result from part (i)
and were able to select the correct values for a and b. However, many did not realise that the result
from part (i) was not directly applicable to part (ii)(b) and so did not gain any marks for that
part, although some candidates did realise that the answer of zero could not be correct and received
some credit for recognising that the function was even and so could identify the start of a correct
solution. Solutions that applied the result from part (i) successfully often achieved full marks,
although in some cases the way in which limits were dealt with was not sufficient. A significant
number of candidates recognised that part (ii)(b) could be solved with a tan substitution and
while this approach was successful, in some cases the final answer was not written in its simplest
form.

In part (iii)(a) many candidates recognised that the same substitution would produce the required
results, but as in part (i) several cases did not produce clear enough solutions to earn all of
the marks. Most candidates were able to successfully calculate the value of the integral. Many
candidates did not choose a suitable substitution for part (iii)(b), but those who did generally
managed to reach an appropriate form of the integral that could be compared to the original.
Many then deduced the correct answer from this, but several did not recognise the significance of
the new integral and then attempted other substitutions with little success.

Solution

(i) This is a “show that” question (as discussed earlier), so make sure that you show sufficient
working to justify the result! Don’t skip steps, even if they are “obvious”, and don’t run too
many steps together.

We have
dx

dt
= −t−2, and so we have:

∫ b

a

1

(1 + x2)
3
2

dx =

∫ b−1

a−1

1(
1 +

(
1
t

)2) 3
2

×−t−2 dt

=

∫ b−1

a−1

−1

t2
(

1 +
(
1
t

)2) 3
2

dt

=

∫ b−1

a−1

−t

t3
(

1 +
(
1
t

)2) 3
2

dt

=

∫ b−1

a−1

−t
(t2 + 1)

3
2

dt

(ii) (a) Using the result from part (i) gives:∫ 2

1
2

1

(1 + x2)
3
2

dx =

∫ 1
2

2

−t
(1 + t2)

3
2

dt

Differentiating (1 + t2)−
1
2 gives:

d

dt
(1 + t2)−

1
2 = −1

2 × 2t× (1 + t2)−
3
2

= −t× (1 + t2)−
3
2

4

https://maths.org/step/


maths.org/step

Therefore we have:

∫ 1
2

2

−t
(1 + t2)

3
2

dt =

 1

(1 + t2)
1
2


1
2

2

=
1(
5
4

)1
2

− 1

(5)
1
2

=
2√
5
− 1√

5

=
1√
5

(b) Since the lower limit is negative, we cannot use the result from part (i). However, since
the integrand is an even function we have:∫ 2

−2

1

(1 + x2)
3
2

dx = 2

∫ 2

0

1

(1 + x2)
3
2

dx

If we let the bottom limit instead be a very small number (traditionally represented by
ε), we can calculate the integral in terms of ε.

2

∫ 2

ε

1

(1 + x2)
3
2

dx = 2

∫ 1
2

1
ε

−t
(1 + t2)

3
2

dt

= 2

 1

(1 + t2)
1
2

 1
2

1
ε

The contribution from the bottom limit is given by:

2(
1 +

(
1
ε

)2) 1
2

=
2ε√

1 + ε2

Which tends to zero as ε→ 0. We then have:∫ 2

−2

1

(1 + x2)
3
2

dx = 2× 1(
1 +

(
1
2

)2)1
2

=
4√
5

(iii) (a) Using the x = 1
t substitution (as in part (i)) we have:∫ 2

1
2

1

(1 + x2)2
dx =

∫ 1
2

2

1(
1 +

(
1
t

)2)2 ×−t−2 dt

= −
∫ 1

2

2

1

t2
(

1 +
(
1
t

)2)2 dt

=

∫ 2

1
2

t2

(t2 + 1)2
dt

=

∫ 2

1
2

x2

(x2 + 1)2
dx
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where the last step uses a t = x substitution. Since both of these are the same, let
them both be equal to I. We then have:

2I =

∫ 2

1
2

1

(1 + x2)2
dx+

∫ 2

1
2

x2

(x2 + 1)2
dx

=

∫ 2

1
2

1 + x2

(x2 + 1)2
dx

=

∫ 2

1
2

1

1 + x2
dx

Therefore we have:∫ 2

1
2

1

(1 + x2)2
dx =

∫ 2

1
2

x2

(x2 + 1)2
dx = I = 1

2

∫ 2

1
2

1

1 + x2
dx

as required.

Using the substitution x = tan θ we have:

1
2

∫ 2

1
2

1

1 + x2
dx = 1

2

∫ tan−1 2

tan−1 1
2

1

1 + tan2 θ
× sec2 θ dθ

= 1
2

(
tan−1 2− tan−1

1

2

)

(b) Using the x = 1
t substitution again we have:∫ 2

1
2

1− x
x(1 + x2)

1
2

dx =

∫ 1
2

2

1− 1
t

1
t

(
1 +

(
1
t

)2) 1
2

×−t−2dt

=

∫ 2

1
2

t− 1(
1 +

(
1
t

)2) 1
2

× 1

t2
dt

=

∫ 2

1
2

t− 1

t (t2 + 1)
1
2

dt

= −
∫ 2

1
2

1− t
t (1 + t2)

1
2

dt

Therefore we have

∫ 2

1
2

1− x
x(1 + x2)

1
2

dx = −
∫ 2

1
2

1− x
x(1 + x2)

1
2

dx, and so we have∫ 2

1
2

1− x
x(1 + x2)

1
2

dx = 0.
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Question 2

2 (i) The real numbers x, y and z satisfy the equations

y =
2x

1− x2
,

z =
2y

1− y2
,

x =
2z

1− z2
.

Let x = tanα. Deduce that y = tan 2α and show that tanα = tan 8α.

Find all solutions of the equations, giving each value of x, y and z in the form
tan θ where −1

2π < θ < 1
2π.

(ii) Determine the number of real solutions of the simultaneous equations

y =
3x− x3

1− 3x2
,

z =
3y − y3

1− 3y2
,

x =
3z − z3

1− 3z2
.

(iii) Consider the simultaneous equations

y = 2x2 − 1 ,

z = 2y2 − 1 ,

x = 2z2 − 1 .

(a) Determine the number of real solutions of these simultaneous equations
with |x| 6 1, |y| 6 1, |z| 6 1.

(b) By finding the degree of a single polynomial equation which is satisfied by
x, show that all solutions of these simultaneous equations have |x| 6 1,
|y| 6 1, |z| 6 1.

7
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Examiner’s report

In part (i) most attempts to show tanα = tan 8α were successful and included sufficient detail to
earn the marks. Some candidates attempted to use the half-angle formula instead of the double-
angle formula. This does not work, as the logic goes in the wrong direction, and leads to a
quadratic with two solutions following which candidates simply asserted that the half angle is the
correct solution. A large proportion of students made no further progress on this question.

Of the students that did progress further on this part, many became confused by the restrictions on
range. They realised solutions were of the form (tanα, tan 2α, tan 4α), but then tried to simulta-
neously have α, 2α, 4α between −π

2 and π
2 . These solutions erroneously discarded (or did not even

find) solutions other than (0, 0, 0). However, some students did realise that they could subtract or
add multiples of π to some of the arguments until all were in the required range. These attempts
often obtained full marks for this part. Some attempts used an alternative method, rather than
using periodicity of tan to solve tanα = tan 8α, they rewrote in terms of sin and cos and used
addition formulae to obtain sin 7α = 0. However, these attempts often only checked the logic in
one direction and did not comment that cosα and cos 8α were non-zero in these cases.

In part (ii) a good number of students attempted the substitution x = tanα, and many of these
either quoted or proved the triple angle formula for tan. Again, some made no further progress
(often scripts that attempted both (i) and (ii) made similar amounts of progress on both parts).
Since this part asked for the number of solutions, rather than finding all solutions, many students
only found solutions for x. This lost credit unless it was accompanied by a check that each value
of x led to a value of y and z. Several candidates failed to discard x = ±π

2 , for which tanx is
undefined, leading to an answer of 27, rather than 25.

In part (iii) (a) many students attempted a useful trigonometric substitution in this part (either
cos or sin). Most scripts that attempted a useful substitution made correct use of the double angle
formula to arrive at cosα = cos 8α or a similar equation using a sin substitution. Solving the
equation cosα = cos 8α gave many students significant difficulty. Many attempts used only the
periodicity of cos, and not the evenness, thus only obtaining half of the solutions. Others failed
to restrict to a range where cos is single-valued, thus finding the same solution for x for different
values of α and erroneously counting these as different solutions. Those who chose to draw a sketch
of the graph to aid their thinking generally produced better solutions in this part. In part (iii)
(b) most attempts found the correct octic [Edit: an octic is a polynomial of degree 8]. Attempts
that had found fewer than 8 solutions in (a) often made no further progress. Candidates who had
found 8 solutions in (a) often obtained full marks in this part.

Solution

(i) Substituting x = tanα into the expression for y gives:

y =
2 tanα

1− tan2 α

= tan 2α

Using the same method we have z = tan 4α, and using this in the expression for x in terms
of z gives x = tan 8α. Therefore we have tanα = tan 8α.

One solution is given by α = 8α =⇒ α = 0, which gives x = y = z = 0. Using the symmetry
of tan θ we also have solutions when 8α = α+ nπ =⇒ α = 1

7nπ (you can sketch a graph of
8
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tan θ to help with this — see the comments in part (iii)(a) for a similar situation). For θ to
be in the required range we need −3 6 n 6 3.

If we take x = tan 1
7π, then this gives y = tan 2

7π and z = tan 4
7π = tan −37 π (noting that we

need 1
2π < θ < 1

2π, and so we cannot have 4
7π).

The non-zero solutions are:

(x, y, z) = Cyclic permutations of
(
tan 1

7π, tan 2
7π, tan −37 π

)
and (x, y, z) = Cyclic permutations of

(
tan −17 π, tan −27 π, tan 3

7π
)

A Cyclic permutation means keeping the relative order of the object the same, so the cyclic
permutations of (A, B, C) are (A, B, C), (B, C, A) and (C, A, B).
You can also just write out all the possible solutions — there are only 7 of them including
the (0, 0, 0) one, so it shouldn’t take too long.

(ii) In the previous part, we used an identity for tan 2α. Here there are some 3’s appearing, so
let’s start by considering tan 3α

tan 3α = tan(α+ 2α)

=
tanα+ tan 2α

1− tanα tan 2α

=
t+ 2t

1−t2

1− t× 2t
1−t2

where t = tanα

=
t− t3 + 2t

1− t2 − 2t2

=
3t− t3

1− 3t2

This is the same form as the expressions for x, y and z in this part. Therefore if x = tanα,
then y = tan 3α and z = tan 9α. This means that we have tan 27α = tanα, and in a similar
way to before we have 26α = nπ.

There are 25 values of n which give distinct values of α, which are α = −12,−11, · · · , 11, 12.
n = −13 and n = 13 do not give finite values for tanα. We therefore have 25 possible values
for x, but we need to check that these give finite values for y and z as well.

If α = n
26π, where n 6= −13 and n 6= 13, then 3α = 3n

26π and 9α = 9n
26π are not multiples of 1

2π,
as n and 3 are co-prime to 13. Therefore for each possible value of x there are corresponding
possible values of y and z, and there are 25 solutions altogether.

You do need to justify that each of the 25 values of α give finite values for x, y and z, but
this explanation was only worth one mark, so don’t worry too much if you missed it out!

(iii) These expressions look suspiciously like cos 2α.

(a) We are told that |x| 6 1, so we can use the substitution x = cosα, with 0 6 α 6 π
(we need to make sure we cover the range of values −1 6 x 6 1, which this range of α
satisfies). If x = cosα, then y = cos 2α and z = cos 4α, and we have cos 8α = cosα.

This means that we need 8α = α+ 2nπ or 8α = −α+ 2mπ.

When trying to find general solutions of trig equations, I rarely remember the general
forms, I tend to sketch a graph so that I can work out what the general solution might

9
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look like. Below is the sort of thing I would (roughly!) sketch to check that I had the
correct general form:

Using 8α = α + 2nπ we have α = 2
7nπ, so with 0 6 α 6 π there are four solutions,

n = 0, 1, 2, 3.

If instead we take 8α = −α+ 2mπ we have α = 2
9mπ, so with 0 6 α 6 π there are five

solutions, m = 0, 1, 2, 3, 4.

The solutions with n = 0 and m = 0 are the same (both give α = 0), but the rest are
distinct so we have 8 distinct solutions.

(b) We have:

x = 2z2 − 1

= 2
(
2y2 − 1

)2 − 1

= 2
[
2
(
2x2 − 1

)2 − 1
]2
− 1

The highest power of x on the right-hand side is 8, so the polynomial in x has degree 8,
meaning that there are at most 8 distinct roots of the polynomial, so at most 8 distinct
values of x. Since we found 8 distinct values of x in the previous part, these must be
all of the possible solutions of the equations, and therefore all of the solutions to the
simultaneous equations have |x| 6 1, |y| 6 1 and |z| 6 1.

10
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Question 3

3 Let p(x) be a polynomial of degree n with p(x) > 0 for all x and let

q(x) =

n∑
k=0

p(k)(x) ,

where p(k)(x) ≡ dkp(x)

dxk
for k > 1 and p(0)(x) ≡ p(x).

(i) (a) Explain why n must be even and show that q(x) takes positive values for
some values of x.

(b) Show that q′(x) = q(x)− p(x).

(ii) In this part you will be asked to show the same result in three different ways.

(a) Show that the curves y = p(x) and y = q(x) meet at every stationary
point of y = q(x).

Hence show that q(x) > 0 for all x.

(b) Show that e−xq(x) is a decreasing function.

Hence show that q(x) > 0 for all x.

(c) Show that ∫ ∞
0

p(x+ t)e−t dt = p(x) +

∫ ∞
0

p(1)(x+ t)e−t dt .

Show further that ∫ ∞
0

p(x+ t)e−t dt = q(x) .

Hence show that q(x) > 0 for all x.

Examiner’s report

In part (i) (a) when assuming that the degree of p is odd for a contradiction, many also assumed
that the lead coefficient of p(x) was positive and so made the statement that p(x) tends to minus
infinity as x tends to minus infinity which is not necessarily correct (unless an argument that the
lead coefficient is positive was provided). Many candidates did not provide sufficient detail and so
were not awarded full marks for this part.
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In part (i)(b) candidates generally produced good answers, but a number lost marks for not stating
that the (n+1)th derivative of p is zero sufficiently clearly. Some used +... at the end of the sum of
polynomials that define q(x) or just didn’t discuss the final term of q′(x) and again in these cases
it was not sufficiently clear that the key idea had been understood.

In part (ii) (a) candidates generally completed the first part well, but a significant number of
candidates lost a mark because their argument was the wrong way round, arguing that B implies A
rather than A implies B. A significant number of candidates realised that all the stationary points
of q must have a positive y-coordinate but they didn’t link this to q(x) being positive for large |x|
to get all the marks.

In part (ii) (b) the first part was again usually very well done. In a similar way to part (a) there
were a good number of impressive answers to ‘q(x) > 0 for all x’ but many lost marks by not
providing sufficient detail or not including all aspects of the argument (particularly that q(x) > 0
for large x).

Part (ii) (c) was generally very well done. Virtually all candidates used the right method for the
first part but some lost a mark for not providing sufficient detail in the substitution in integration
by parts. Most did the rest of this part well but quite a few candidates lost marks for not dealing
with the end term of the summation correctly - in the main line of the solution it is an integral
which candidates should explain is zero. Some neglected to include this term without comment
or used +... at the end of the sum and, in these cases, it was not clear that the idea had been
understood.

Solution

(i) (a) If we think about any polynomial with an odd degree, then as x → ∞ in different
directions, the polynomial will tend to +∞ in one direction and −∞ in the other,
which means that there will be some values where p(x) < 0. Hence we must have n
even.

Note that whilst it is necessary for n to be even, this is not sufficient for p(x) > 0 to
hold for all x. Another way of saying this is that p(x) > 0 only if n is even — but this
is not an “if and only if” situation.

If p(x) = anx
n + an−1x

n−1 · · · , then we must have an > 0 if we are going to have
p(x) > 0 for all x.

We have:

q(x) = p(x) + p′(x) + p′′(x) + · · ·
=
[
anx

n + an−1x
n−1 + · · ·

]
+
[
nanx

n−1 + (n− 1)an−1x
n−2 + · · ·

]
+
[
n(n− 1)anx

n−2 + (n− 1)(n− 2)an−1x
n−3 + · · ·

]
= anx

n + [an−1 + nan]xn−1 + · · ·

Therefore the degree of q(x) is n, where n is even, and the coefficient of xn is postive,
so q(x) will tend to +∞ as x→ ±∞. Therefore there must be some values of x where
q(x) is positive.

12
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(b) Since p(x) is a polynomial of degree n, the (n+ 1)th derivative and higher will be zero.
For example, if n = 2 and p(x) = x2 + 2x + 3, then when we differentiate three times
we get zero.

Differentiating the expression for q(x) gives:

q(x) =

n∑
k=0

p(k)(x)

q′(x) =
n∑
k=0

p(k+1)(x)

= p(1)(x) + p(2)(x) + · · ·+ p(n)(x) + p(n+1)(x)

= p(1)(x) + p(2)(x) + · · ·+ p(n)(x) as p(n+1)(x) = 0

=

n∑
k=0

p(k)(x)− p(x)

= q(x)− p(x)

(ii) (a) At a stationary point we have q′(x) = 0, and so we have p(x) = q(x), and so the two
curves meet at the stationary points of q(x).

Care is needed here to get the implication in the correct direction. The question is
asking you to show that “stationary point of q(x) =⇒ the curves meet”, and not the
other way around. This means that arguments that started with p(x) = q(x) were not
valid.

We know that q(x) takes positive values as x→ ±∞, so at some point it must have at
least one minimum value. At every stationary point of q(x) we have q(x) = p(x), so
at every (local) minimum of the curve y = q(x) we have q(x) = p(x) > 0. Therefore
q(x) > 0 for all values of x.

(b) Differentiating e−xq(x) gives:

d

dx

(
e−xq(x)

)
= e−xq′(x)− e−xq(x)

= e−x
[
q(x)− p(x)

]
− e−xq(x)

= −p(x)e−x

Since we are give p(x) > 0, and we know that e−x > 0, we have
d

dx
(e−xq(x)) < 0 and

the function is decreasing.

In part (i) we showed that q(x) → +∞ as x → ∞. We also have e−x > 0 for all x,
and so as x → +∞ we have e−xq(x) > 0. Since e−xq(x) is a decreasing function, we
therefore have e−xq(x) > 0 for all x, and as e−x is always positive we have q(x) > 0 for
all x.
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(c) We have:∫ ∞
0

p(x+ t)e−t dt =
[
− e−tp(x+ t)

]∞
0
−
∫ ∞
0
−e−tp′(x+ t) dt

=
[
− 0−−e0 × p(x+ 0)

]
+

∫ ∞
0

p(1)(x+ t)e−t dt

= p(x) +

∫ ∞
0

p(1)(x+ t)e−t dt

This process can then be repeated until we reach:∫ ∞
0

p(x+ t)e−t dt = p(x) + p(1)(x) + p(2)(x) + · · ·+ p(n)(x) +

∫ ∞
0

p(n+1)(x+ t)e−t dt

But we have p(n+1)(x) = 0 and so∫ ∞
0

p(x+ t)e−t dt = p(x) + p(1)(x) + p(2)(x) + · · ·+ p(n)(x) = q(x)

We are told that p(x) > 0 for all x, and we know that e−x > 0 for all x, hence p(x+t)e−t

is positive for all t.

Therefore the integral

∫ ∞
0

p(x+ t)e−t dt = q(x) represents a positive area above the x

axis. Hence we have q(x) > 0 for all x.

14
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Question 4

4 (i) Show that, if
(
x−
√

2
)2

= 3, then x4 − 10x2 + 1 = 0.

Deduce that, if f(x) = x4 − 10x2 + 1, then f
(√

2 +
√

3
)

= 0.

(ii) Find a polynomial g of degree 8 with integer coefficients such that
g
(√

2 +
√

3 +
√

5
)

= 0. Write your answer in a form without brackets.

(iii) Let a, b and c be the three roots of t3 − 3t+ 1 = 0.

Find a polynomial h of degree 6 with integer coefficients such that h
(
a+
√

2
)

= 0,

h
(
b+
√

2
)

= 0 and h
(
c+
√

2
)

= 0. Write your answer in a form without brackets.

(iv) Find a polynomial k with integer coefficients such that k
(

3
√

2 + 3
√

3
)

= 0. Write
your answer in a form without brackets.

Examiner’s report

There were a wide variety of different approaches to part (i), including some which identified what
the four roots of a quartic with integer coefficients would have to be in order for the required
condition to be met.

In part (ii) many candidates were able to identify a valid approach to the question although some
algebraic errors meant that some did not reach the correct final polynomial. As with part (i) there
were a number of different approaches that were taken.

In part (iii) most candidates recognised that a translation of the graph would provide a cubic with
the correct roots. Many were then able to apply similar methods to the earlier parts of the question
to obtain the required polynomial with integer coefficients.

Many candidates did not attempt the final part of the question, but those who did were generally
able to adapt the methods from the previous parts successfully to make good progress.
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Solution

(i) We have: (
x−
√

2
)2

= 3

x2 − 2
√

2x+ 2 = 3

x2 − 1 = 2
√

2x

x4 − 2x2 + 1 = 8x2

x4 − 10x2 + 1 = 0

One root of
(
x−
√

2
)2

= 3 is x =
√

2 +
√

3, and so this is also a root of x4 − 10x2 + 1 = 0,

so we have f
(√

2 +
√

3
)

= 0.

(ii)
√

2 +
√

3 +
√

5 is a root of (x−
√

2)2 =
(√

3 +
√

5
)2

. Simplifying gives:

(x−
√

2)2 =
(√

3 +
√

5
)2

x2 − 2
√

2x+ 2 = 3 + 2
√

15 + 5

x2 − 6 = 2
√

2x+ 2
√

15

x4 − 12x2 + 36 = 8x2 + 8
√

30x+ 60

x4 − 20x2 − 24 = 8
√

30x

x8 − 40x6 + 352x4 + 960x2 + 576 = 1920x2

x8 − 40x6 + 352x4 − 960x2 + 576 = 0

(iii) Using a substitution of t = x−
√

2 gives:

(x−
√

2)3 − 3(x−
√

2) + 1 = 0

x3 − 3
√

2x2 + 6x− 2
√

2− 3x+ 3
√

2 + 1 = 0

x3 − 3
√

2x2 + 3x+
√

2 + 1 = 0

x3 + 3x+ 1 =
√

2
(
3x2 − 1

)
x6 + 6x4 + 2x3 + 9x2 + 6x+ 1 = 2

(
9x4 − 6x2 + 1

)
x6 − 12x4 + 2x3 + 21x2 + 6x− 1 = 0

(iv) Let x = 3
√

2 + 3
√

3. We then have:

x3 =
(

3
√

2 +
3
√

3
)3

x3 = 2 + 3× 3
√

22 × 3
√

3 + 3× 3
√

2× 3
√

32 + 3

x3 = 5 + 3
3
√

12 + 3
3
√

18

x3 − 5 = 3
3
√

6
(

3
√

2 +
3
√

3
)

x3 − 5 = 3
3
√

6
(
x
)

Spotting this is the trickiest step!(
x3 − 5

)3
= 27× 6× x3

x9 − 15x6 + 75x3 − 125 = 162x3

x9 − 15x6 − 87x3 − 125 = 0
16
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Question 5

5 (i) The sequence xn for n = 0, 1, 2, . . . is defined by x0 = 1 and by

xn+1 =
xn + 2

xn + 1

for n > 0.

(a) Explain briefly why xn > 1 for all n.

(b) Show that x2n+1 − 2 and x2n − 2 have opposite sign, and that∣∣x2n+1 − 2
∣∣ 6 1

4

∣∣x2n − 2
∣∣ .

(c) Show that
2− 10−6 6 x210 6 2 .

(ii) The sequence yn for n = 0, 1, 2, . . . is defined by y0 = 1 and by

yn+1 =
y2n + 2

2yn

for n > 0.

(a) Show that, for n > 0,

yn+1 −
√

2 =

(
yn −

√
2
)2

2yn

and deduce that yn > 1 for n > 0.

(b) Show that

yn −
√

2 6 2

(√
2− 1

2

)2n

for n > 1.

(c) Using the fact that √
2− 1 < 1

2 ,

or otherwise, show that

√
2 6 y10 6

√
2 + 10−600 .
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Examiner’s report

In part (i) (a) most candidates realised that induction was necessary. Although “explain briefly”
was written in the question, some candidates omitted necessary components of an inductive ar-
gument here. Some candidates incorrectly stated that the sequence always increased. A popular
alternative method was stating xn + 2 > xn + 1. In this case it is necessary to observe that the
denominator is positive to secure full marks.

In part (i) (b) many candidates were successful here in rewriting x2n+1−2 in terms of xn but some
failed to assert (and very briefly justify) the strict positivity of (xn + 1)2 in order to show that
x2n+1 − 2 and x2n − 2 have opposite signs. When showing |x2n+1 − 2| 6 1

4 |x
2
n − 2| the most common

mistake was to not use absolute value signs, and write false assertions like x2n+1 − 2 6 1
4(x2n − 2),

which is false for odd n.

In part (i) (c) many students used the inequality in the previous part repeatedly to write |x210−2| 6
1
410
|x20 − 2| but did not give a justification that 410 > 106. A small number of candidates were able

to calculate x10, and x210 successfully and numerically compare these to 2 and 2 − 10−6, however
almost all attempts at this were unsuccessful.

Almost all candidates who attempted part (ii) (a) earned at least one mark. In several cases
candidates did not formulate a standard inductive argument, either missing the base case or not
using an inductive hypothesis.

In part (ii) (b) many candidates used n = 0 as a base case, but this is not valid here. Of those
who opted for an alternative method of using recursion to write yn −

√
2 in terms of y0 −

√
2, few

were able to justify the exponent for powers of 2. Candidates who attempted a full inductive proof
often earned at least 2 of the 4 marks for this part.

Candidates attempting part (ii)(c) often earned some marks for showing the correct method, but
errors in the accuracy of the work meant that few were able to achieve full marks here.

Solution

(i) (a) Rearranging gives:

xn+1 − 1 =
xn + 2

xn + 1
− 1

xn+1 − 1 =
(xn + 2)− (xn + 1)

xn + 1

xn+1 − 1 =
1

xn + 1

If xn > 1, then we have xn+1 − 1 > 0 =⇒ xn+1 > 1. We also have x0 = 1, and so
xn > 1 for n > 0 by induction.

When trying to prove an inequality, it’s often a good idea to try and rearrange to
compare to zero instead.
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(b) We have:

x2n+1 − 2 =

(
xn + 2

xn + 1

)2

− 2

=
(xn + 2)2 − 2(xn + 1)2

(xn + 1)2

=
x2n + 4xn + 4− 2x2n − 4xn − 2

(xn + 1)2

=
2− x2n

(xn + 1)2

=
−(x2n − 2)

(xn + 1)2

Then as (xn + 1)2 > 0, x2n+1 − 2 and x2n − 2 have different signs.

Since we have xn > 1, (xn + 1)2 > 22, and so since x2n+1 − 2 =
−(x2n − 2)

(xn + 1)2
we have

|x2n+1 − 2| 6 1
4 |x

2
n − 2|.

(c) x210 − 2 and x20 − 2 have the same sign. Since x0 = 1, we know x20 − 2 < 0, so
x210 − 2 < 0 =⇒ x210 < 2.

We also have |x2n+1 − 2| 6 1
4 |x

2
n − 2|, and so |x210 − 2| 6 1

410
|x20 − 2| = 1

410
(as x0 = 1).

Therefore we have |x210 − 2| 6 1
220

. Noting that 210 = 1024 > 1000 = 103, so we have
220 > 106, therefore 2−20 < 10−6 and we have:

|x210 − 2| 6 10−6

2− 10−6 6 x210 6 2 + 10−6

2− 10−6 6 x210 6 2 as we have previously shown x210 < 2

(ii) (a) We have:

yn+1 −
√

2 =
y2n + 2

2yn
−
√

2

yn+1 −
√

2 =
y2n + 2− 2

√
2yn

2yn

yn+1 −
√

2 =
(yn −

√
2)2

2yn

We know that (yn −
√

2)2 > 0, so as long as yn > 0, we have yn+1 >
√

2. Since y0 = 1
we have yn+1 >

√
2 for n > 0, so yn > 1 for n > 0.

(b) Be a little bit careful here - in this case we are looking at n > 1.

Considering the case n = 1 we have y1 =
12 + 2

2
=

3

2
, and so y1 −

√
2 =

3− 2
√

2

2
.

Looking at the right hand side of the inequality we have

2

(√
2− 1

2

)21

= 2

(
2 + 1− 2

√
2

4

)
=

3− 2
√

2

2
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Therefore the inequality is true when n = 1 (when it is actually an equality).

Assuming the statement is true when n = k we have:

yk −
√

2 6 2

(√
2− 1

2

)2k

and since k > 1 we know from before that yk −
√

2 > 0. This means that we have:

yk −
√

2 6 2

(√
2− 1

2

)2k

=⇒
(
yk −

√
2
)2

6 2

(√2− 1

2

)2k
2

Note that if yk −
√

2 was negative then we couldn’t square the inequality and be sure
that it would still be true. For example −3 < 2 but if we square both sides then the
inequality would have to be reversed.

Then considering n = k + 1:

yk+1 −
√

2 =
(yk −

√
2)2

2yk
from part (ii)(a)

yk+1 −
√

2 6
1

2yk

2

(√
2− 1

2

)2k
2

using inductive hypothesis

yk+1 −
√

2 6
4

2yk

(√
2− 1

2

)2×2k

squaring

yk+1 −
√

2 6
2

yk

(√
2− 1

2

)2k+1

simplifying

yk+1 −
√

2 6 2

(√
2− 1

2

)2k+1

as yk >
√

2 > 1 for n > 1

Therefore the statement is true when n = 1, and if it is true for n = k then it is true
for n = k + 1, hence it is true for all integers n > 1.

(c) From the work done in (ii)(a) we have yn+1 >
√

2 for n > 0, and so we have y10 >
√

2.

Using the result from part (ii)(b) we have

y10 −
√

2 6 2

(√
2− 1

2

)210

Using the given fact that
√

2− 1 < 1
2 gives

y10 −
√

2 6 2

(
1

4

)210
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We want to convert this limit into powers of 10, rather than powers of 4. We have:

1

210
< 10−3

using the fact that 210 = 1024 > 1000.

Manipulating the inequality:

y10 −
√

2 6 2

(
1

4

)210

= 2× 1

22048

y10 −
√

2 6
2

28
× 1

22040
<

2

28
× 10−612

Where the last line uses the fact that 2−10 < 10−3 so 2−10×204 < 10−3×204.

Therefore we have y10 −
√

2 6 10−600 and putting the two inequalities for y10 together
gives: √

2 6 y10 6
√

2 + 10−600

as required.
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Question 6

6 The sequence Fn, for n = 0, 1, 2, . . ., is defined by F0 = 0, F1 = 1 and by Fn+2 =
Fn+1 + Fn for n > 0.

Prove by induction that, for all positive integers n,(
Fn+1 Fn
Fn Fn−1

)
= Qn,

where the matrix Q is given by

Q =

(
1 1
1 0

)
.

(i) By considering the matrix Qn, show that Fn+1Fn−1−F 2
n = (−1)n for all positive

integers n.

(ii) By considering the matrix Qm+n, show that Fm+n = Fm+1Fn + FmFn−1 for all
positive integers m and n.

(iii) Show that Q2 = I + Q.

In the following parts, you may use without proof the Binomial Theorem for
matrices:

(I + A)n =
n∑
k=0

(
n
k

)
Ak.

(a) Show that, for all positive integers n,

F2n =
n∑
k=0

(
n
k

)
Fk .

(b) Show that, for all positive integers n,

F3n =
n∑
k=0

(
n
k

)
2kFk

and also that

F3n =

n∑
k=0

(
n
k

)
Fn+k .

(c) Show that, for all positive integers n,

n∑
k=0

(−1)n+k
(
n
k

)
Fn+k = 0 .
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Examiner’s report

Most candidates were able to complete the proof by induction on which the other parts of the
question are based. In some cases, the matrix multiplication was not completed correctly (such
as calculating the product AB rather than BA). Throughout the question some candidates also
got confused about the different variables involved although in some cases where this was clearly
simply a mislabelling, they were given the benefit of the doubt.

Most candidates were able to see how the relevant matrices could be used to obtain answers for
both part (i) and part (ii), but in a small number of cases there was insufficient justification to
show that the way in which the result was deduced had been understood.

In part (iii) most candidates were able to show that Q2 = I+Q, but many candidates were unable
to make much more progress from this point. There were a small number of excellent solutions,
carefully checking all of the relevant cases in each part and providing very clear explanations of the
reasoning.

Solution
Be careful not to miss the request in the stem of the question!
As is often the case, it turns out that Fn are the Fibonacci numbers.

We are being asked to prove the result for all positive integers, so the smallest value of n is n = 1.
When n = 1 we have:

Q1 =

(
1 1
1 0

)
=

(
F2 F1

F1 F0

)
and so the result is true when n = 1.

Assume the result is true when n = k, and so we have:

Qk =

(
Fk+1 Fk
Fk Fk−1

)

Then considering n = k + 1 we have:

Qk+1 = QQk =

(
1 1
1 0

)(
Fk+1 Fk
Fk Fk−1

)
=

(
Fk+1 + Fk Fk + Fk−1
Fk+1 Fk

)
=

(
Fk+2 Fk+1

Fk+1 Fk

)
which is the required form of the matrix when n = k + 1, and so the result is true for all positive
integers n.

(i) We have detQ = 0− 1 = −1. We also have det (Qn) = [detQ]n. This gives:

Fn+1Fn−1 − F 2
n = (−1)n

as required.

23
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(ii) Considering Qm+n = QmQn gives:(
Fm+n+1 Fm+n

Fm+n Fm+n−1

)
=

(
Fm+1 Fm
Fm Fm−1

)(
Fn+1 Fn
Fn Fn−1

)

By considering the top right element of Qm+n we have:

Fm+n = Fm+1Fn + FmFn−1

as required.

You could have also considered the bottom left element, but would have needed to do a m/n
swap in order to get the exact result requested.

(iii) We have:

Q2 =

(
1 1
1 0

)(
1 1
1 0

)
=

(
2 1
1 1

)
=

(
1 0
0 1

)
+

(
1 1
1 0

)
= I + Q

(a) Using the result just shown we have:

Q2n = (I + Q)n(
F2n+1 F2n

F2n F2n−1

)
=

n∑
k=0

(
n
k

)
Qk

Then considering the top right (or bottom left) element we have:

F2n =
n∑
k=0

(
n
k

)
Fk

(b) We have:

Q3 = QQ2

= Q
[
I + Q

]
= Q + Q2

= Q + I + Q

= I + 2Q

Using this result we have:

Q3n = (I + 2Q)n(
F3n+1 F3n

F3n F3n−1

)
=

n∑
k=0

(
n
k

)
2kQk

24

https://maths.org/step/


maths.org/step

Taking the top right element gives:

F3n =
n∑
k=0

(
n
k

)
2kFk

Alternatively, using Q3 = Q
[
I + Q

]
gives:

Q3n = Qn
[
I + Q

]n(
F3n+1 F3n

F3n F3n−1

)
= Qn

n∑
k=0

(
n
k

)
Qk

=

n∑
k=0

(
n
k

)
Qn+k

Taking the top right element gives:

F3n =

n∑
k=0

(
n
k

)
Fn+k

An alternative approach for this last result:

From (ii) we have
F3n = F2n+n = F2n+1Fn + F2nFn−1

Using the matrices in (iii)(a) and considering the top left element we have:

F2n+1 =
n∑
k=0

(
n
k

)
Fk+1

Using this and the result from (iiii)(a) we have:

F3n = F2n+1Fn + F2nFn−1

=

n∑
k=0

(
n
k

)
Fk+1Fn +

n∑
k=0

(
n
k

)
FkFn−1

=

n∑
k=0

(
n
k

)[
Fk+1Fn + FkFn−1

]
=

n∑
k=0

(
n
k

)
Fn+k

(c) For this part we want a negative sign to appear in the Binomial Theorem. We have:

Q2 = I + Q =⇒ I = Q
[
Q− I

]
We then have:

In = (−1)nQn
[
I−Q

]n
In = (−1)nQn

n∑
k=0

(
n
k

)
(−Q)k

In =

n∑
k=0

(
n
k

)
(−1)n+kQn+k
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Then considering the top right element gives:

0 =

n∑
k=0

(−1)n+k
(
n
k

)
Fn+k
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Question 7

7 (i) The complex numbers z and w have real and imaginary parts given by z = a+ib
and w = c+ id. Prove that |zw| = |z||w|.

(ii) By considering the complex numbers 2 + i and 10 + 11i, find positive integers h
and k such that h2 + k2 = 5× 221.

(iii) Find positive integers m and n such that m2 + n2 = 8045.

(iv) You are given that 1022 + 2012 = 50805.

Find positive integers p and q such that p2 + q2 = 36× 50805.

(v) Find three distinct pairs of positive integers r and s such that r2 + s2 = 25 ×
1002082 and r < s.

(vi) You are given that 109× 9193 = 1002037.

Find positive integers t and u such that t2 + u2 = 9193.

Examiner’s report

Most candidates were successful in the first two parts, with marks being lost mostly due to the small
inaccuracy of forgetting the square root in the expression for the modulus of a complex number.

Part (iii) was also typically done well, with most candidates picking up the idea of dividing by 5,
however with mixed accuracy on the other factor. The candidates who picked up that the other
factor can be written as a sum of squares were mostly successful in this part, as were almost all
the candidates who attempted part (iv).

Parts (v) and (vi) discriminated between candidates, with many successfully getting through (i)-
(iv) with full marks but unfortunately making little to no progress on these two. Many failed to
spot the decompositions 10012 + 92 in (v) and 10012 + 62 in (vi). The candidates who found these
got access to the marks, though many didn’t manage to find three solutions in part (v). This
was from either overlooking the Pythagorean triple of (3, 4, 5) or the simpler solution obtained by
noting that 25 is the square of 5. In part (vi), many candidates either chose the wrong complex
number and did not try another one or by failing to notice that 10028 or 2943 are divisible by 109.
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Solution

(i) We have:

|zw|2 = |(a+ ib)(c+ id)|2

= |(ac− bd) + i(ad+ bc)|2

= (ac− bd)2 + (ad+ bc)2

= a2c2 − 2abcd+ b2d2 + a2d2 + 2abcd+ b2c2

= a2c2 + b2d2 + a2d2 + b2c2

Also:

(|z||w|)2 = |z|2|w|2 = (a2 + b2)(c2 + d2)

= a2c2 + a2d2 + b2c2 + b2d2

Therefore we have |zw|2 = (|z||w|)2 and so |zw| = |z||w| as both sides have to be positive.

(ii) Let z = 2 + i and w = 10 + 11i, which gives |z|2 = 5 and |w|2 = 221. Using |zw|2 = |z|2|w|2,
we know that |zw|2 = 5× 221. We have:

zw = (2 + i)(10 + 11i)

= 20− 11 + 10i + 22i

= 9 + 32i

So we have h = 9 and k = 32.

(iii) Using the same idea as before, start by factorising 8045, and we can see that we have a factor
of 5. We have 8045 = 5× 1609, and we know that |2 + i|2 = 5. We can write 1609 = 402 + 32,
and so we can take w = 40 + 3i. Expanding dives:

(2 + i)(40 + 3i) = 80− 3 + 40i + 6i

= 77 + 46i

and so we have 772 + 462 = 8045.

You could instead consider (2 + i)(3 + 40i) which leads to the answer 342 + 832.

(iv) The first thought is to try to write 36 as a sum of two squares, but this is not possible.
Instead, consider |kz|2 = k2|z|2, where k is a real constant.

We have 36×50805 = 62×50805. Therefore since |102+201i|2 = 50805, we have 6122+12062 =
62 × 1022 + 62 × 2012 = 36× 50805.

(v) First note that 1002082 = 1002001 + 81 = 10012 + 92.

Using the same idea as in part (iv) we have one pair of values given by 50052 + 452.

In this case, we can write 25 as the sum as two squares, i.e. 25 = 32 + 42. Therefore we can
also have:

(3 + 4i)(1001 + 9i) = 3003− 36 + 4004i + 27i

= 2967 + 4031i
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So another solution is 29672 + 40312.

Alternatively we have:

(4 + 3i)(1001 + 9i) = 4004− 27 + 3003i + 36i

= 3977 + 3039i

So a third solution is 39772 + 30392

(vi) We have 102 + 32 = 109 and 10012 + 62 = 1002037. Let z = 10 + 3i, w = x + iy and
zw = 1001 + 6i, which then gives:

x+ iy =
1001 + 6i

10 + 3i

=
(1001 + 6i)(10− 3i)

109

=
10028− 2943i

109
= 92− 27i

Therefore we have 922 + 272 = 9193.

The arithmetic here has numbers which are a little too large to handle very comfortably
without a calculator (though it is still possible to do so!). A couple of alternative methods
are shown below, which you may, or may not, find to be less work.

Neither of the following methods use the statement given at the start of part (iv), but since
the question did not say “hence” that’s fine!

Method 1
We can write 9193 as a product of two prime numbers, 9193 = 29×317. We have 29 = 52+22

and 317 = 112 + 142. Considering (2 + 5i)(11 + 14i) gives:

(2 + 5i)(11 + 14i) = 22− 70 + (55 + 28)i

= −48 + 83i

Therefore we have 482 + 832 = 9193.

Method 2
Square numbers have to end in 0, 1, 4, 5, 6 or 9. The only way to get a sum of two squares
which ends in 3 is by picking two square numbers which end in 4 and 9, so WLOG let u2

end in 4 and t2 end in 9. This means that u ends in 2 or 8, and t end in 3 or 7. Working
systematically through possible values of u or t will (eventually) lead to a solution. For
example:

t = 7 =⇒ u2 = 9193− 49 = 9144 not a square number

t = 17 =⇒ u2 = 9193− 289 = 8904 not a square number

t = 27 =⇒ u2 = 9193− 729 = 8464 = 922
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Question 8

8 A tetrahedron is called isosceles if each pair of edges which do not share a vertex have
equal length.

(i) Prove that a tetrahedron is isosceles if and only if all four faces have the same
perimeter.

Let OABC be an isosceles tetrahedron and let
−→
OA = a,

−−→
OB = b and

−−→
OC = c.

(ii) By considering the lengths of OA and BC, show that

2b.c = |b|2 + |c|2 − |a|2.

Show that
a.(b + c) = |a|2.

(iii) Let G be the centroid of the tetrahedron, defined by
−−→
OG = 1

4(a + b + c).

Show that G is equidistant from all four vertices of the tetrahedron.

(iv) By considering the length of the vector a − b − c, or otherwise, show that, in
an isosceles tetrahedron, none of the angles between pairs of edges which share
a vertex can be obtuse. Can any of them be right angles?

Examiner’s report

In part (i), most candidates answered the “only if” direction of the argument successfully, often
with a diagram. Many candidates did not realise they needed to prove “if” separately, but those
that did usually answered this well. Most students wrote a list of simultaneous equations in the
edge lengths to solve. Appeals to symmetry were accepted without much detail needed. Many
candidates did not attempt the later parts of the question.

Part (ii) was generally answered well. Many students attempted the cosine rule, which required
some detail relating it to the given problem. A surprising number of candidates would set the
direction vectors of each edge equal, rather than just their lengths. Some ended up confusing
scalars and vectors due to poor notation.

In part (iii) many candidates found a.g etc. rather than |
−→
AG|. This could be made to work but

needed to be made relevant to the question to earn marks. Some candidates thought a,b, c were the
components of a vector and attempted to use Pythagoras, which got no credit. Several candidates

found |
−→
AG|2 etc. in a non-symmetric form and attempted to appeal to symmetry, which was not

accepted.
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Part (iv) proved to be quite tricky for most candidates. Many ignored the questions prompting
entirely [Edit: i.e. they did not consider the length of the vector a−b−c as was suggested!] or failed
to relate it to a relevant geometrical idea. Few candidates used cosine successfully and attained
the final two marks. Several candidates stated that right angles were possible at the end.

Solution

(i) The first thing to do is to come up with a labelling system. There is a suggested labelling
system after part (i), so lets try using that. A clearly labelled diagram will be helpful.

The pairs of edges which do not share a vertex are:

a and c− b

b and a− c

c and b− a

If the tetrahedron is isosceles then we have:

|a| = |c− b|
|b| = |a− c|
|c| = |b− a|

Consider the perimeter of triangle OAB. This has perimeter |a|+ |b|+ |b− a|, which using
the equal lengths above can also be written as |a|+ |b|+ |c|. In a similar way the perimeter
of all the other triangular faces is also equal to |a|+ |b|+ |c|. Therefore if the tetrahedron is
isosceles then the perimeter of each face is the same.
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Working in the opposite direction, assume that the perimeters of all the faces are equal, and
then try to show that |b− a| = |c| (and then by symmetry the other cases will also follow).

Considering faces OAB and OAC we have:

|a|+ |b|+ |b− a| = |a|+ |c|+ |a− c|
=⇒ |b|+ |b− a| = |c|+ |a− c| (1)

and considering faces OCB and ABC:

|c|+ |b|+ |c− b| = |b− a|+ |a− c|+ |c− b|
=⇒ |c|+ |b| = |b− a|+ |a− c| (2)

(1)− (2) =⇒
|b− a| − |c| = |c| − |b− a|

2|b− a| = 2|c|

and so we have |b− a| = |c|. By symmetry the equivalent results hold for the other pairs of
edges which do not share a vertex.

Therefore we have that the tetrahedron is isosceles if and only if each pair of edges which do
not share a vertex are equal in length.

(ii) Since the tetrahedron is isosceles we have |a| = |c− b| and so:

|a|2 = |c− b|2

|a|2 = (c− b) · (c− b)

|a|2 = |c|2 − 2b · c + |b|2

Therefore we have 2b · c = |b|2 + |c|2 − |a|2 as required.

By symmetry we also have 2a · c = |a|2 + |c|2 − |b|2 and 2b · a = |b|2 + |a|2 − |c|2. Adding
these two gives:

2a · b + 2a · c = |b|2 + |a|2 − |c|2 + |a|2 + |c|2 − |b|2

2a ·
(
b + c

)
= 2|a|2

a ·
(
b + c

)
= |a|2
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(iii) Consider the distance between A and G given by |
−→
AG| = |g − a|. We have:

|g − a|2 =
1

16
|4g − 4a|2

=
1

16
|a + b + c− 4a|2

=
1

16
|b + c− 3a|2

=
1

16

(
9|a|2 + |b|2 + |c|2 + 2b · c− 6a · c− 6a · b

)
=

1

16

(
9|a|2 + |b|2 + |c|2 + 2b · c− 6a · (b + c)

)
=

1

16

(
9|a|2 + |b|2 + |c|2 + |b|2 + |c|2 − |a|2 − 6|a|2

)
=

1

8

(
|a|2 + |b|2 + |c|2)

This is symmetric in a,b, c, therefore G is equidistant from A, B and C. Considering the
distance OG gives:

|g|2 =
1

16
|a + b + c|2

=
1

16

(
|a|2 + |b|2 + |c|2 + 2a · b + 2b · c + 2c · a

)
=

1

16

(
|a|2 + |b|2 + |c|2 + (a · b + a · c) + (b · a + b · c) + (c · a + c · b)

)
=

1

16

(
|a|2 + |b|2 + |c|2 + |a|2 + |b|2 + |c|2

)
=

1

8

(
|a|2 + |b|2 + |c|2

)
Therefore G is equidistant from all four vertices.

(iv) The “or otherwise” statement in this part is so that those who took a different route can still
potentially get the marks, but it is almost always easier to use the method suggested by the
question even if you cannot immediately see how it will help.

We have:

|a− b− c|2 = |a|2 + |b|2 + |c|2 − 2a · (b + c) + 2b · c
= |a|2 + |b|2 + |c|2 − 2|a|2 + (|b|2 + |c|2 − |a|2)
= 2(|b|2 + |c|2 − |a|2)

Since we have |a− b− c|2 > 0 we must have |b|2 + |c|2 − |a|2 > 0. Since the tetrahedron is
isosceles we have |BC| = |a| etc., and so we have cosBAC > 0, hence the angle BAC cannot
be obtuse. By symmetry, none of the angles can be obtuse.

If BAC is a right angle then we have |b|2 + |c|2 = |a|2, and so we must have a − b − c =
0 =⇒ a = b + c. This means that a, b and c are in the same plane and the shape cannot
be a tetrahedron.
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Question 9

9 A truck of mass M is connected by a light, rigid tow-bar, which is parallel to the
ground, to a trailer of mass kM . A constant driving force D which is parallel to the
ground acts on the truck, and the only resistance to motion is a frictional force acting
on the trailer, with coefficient of friction µ.

� When the truck pulls the trailer up a slope which makes an angle α to the
horizontal, the acceleration is a1 and there is a tension T1 in the tow-bar.

� When the truck pulls the trailer on horizontal ground, the acceleration is a2 and
there is a tension T2 in the tow-bar.

� When the truck pulls the trailer down a slope which makes an angle α to the
horizontal, the acceleration is a3 and there is a tension T3 in the tow-bar.

All accelerations are taken to be positive when in the direction of motion of the truck.

(i) Show that T1 = T3 and that M(a1 + a3 − 2a2) = 2(T2 − T1).

(ii) It is given that µ < 1.

(a) Show that
a2 <

1
2(a1 + a3) < a3 .

(b) Show further that
a1 < a2 .

Examiner’s report

Less than half of the candidates produced an accurate diagram for this question, with many leaving
off some forces, or making errors with the gravitational force by not including g. This had an impact
on their ability to proceed with the question, and often those with poorly presented diagrams had
sign errors in their force balance equations (for example, with tension in the wrong direction).
Most seemed to understand how to calculate frictional force. The inclusion of friction on the trailer
and not the truck clearly confused some candidates, causing many of the question parts to be
inaccessible.

Many candidates seemed to struggle with the fact that 6 equations had to be dealt with, and so
struggled to identify which variables to eliminate and how to eliminate them. Additionally, some
candidates did not realise that some of the forces would take different values in the different cases
being considered.

Part (i) was done quite well overall, although for the second part, a fair number of candidates
showed each side was equal to some expression involving the other variables, which is valid but
took much more time than the direction approach using the equation of motion for the truck.
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Part (ii) (a) was done well in some cases, although less well than the previous part. Most candi-
dates who attempted this part were able to show the upper inequality, but the lower one proved to
be more difficult. Most attempts to part (ii) (b) only achieved two of the marks available. Many
candidates did not recognise that the half angle formula was useful here and so struggled to make
progress on the question.

Solution

As is often the case, it’s a good idea to start with a clear diagram! I have used different labels for
the 6 different reaction forces, with the convention that R13 is the reaction force on the truck in
the third diagram (when acceleration is a3). Your diagrams would probably be a little larger than
the ones shown below!

(i) Resolving forces when the truck and trailer are going uphill we have:

D − T1 −Mg sinα = Ma1 (1)

R11 = Mg cosα (This turns out not to be useful!)

T1 − µR21 − kMg sinα = kMa1

R21 = kMg cosα

=⇒ T1 − µkMg cosα− kMg sinα = kMa1 (2)

Resolving for the downhill case gives:

D − T3 +Mg sinα = Ma3 (3)

T3 − µkMg cosα+ kMg sinα = kMa3 (4)

The horizontal case gives:

D − T2 = Ma2 (5)

T2 − µkMg = kMa2 (6)

There are lots of equations here, so it is a good idea to number the ones that we think we
will use later! It doesn’t matter if you label ones you don’t end up using.
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The first thing we are asked to show is that T1 = T3, so we probably don’t need the horizontal
equations for this part. Using (1) and (2) to eliminate a1 gives:

T1 − µkMg cosα− kMg sinα = k(D − T1 −Mg sinα)

=⇒ (1 + k)T1 = kD + µkMg cosα

Similarly we can use (3) and (4) to eliminate a3:

T3 − µkMg cosα+ kMg sinα = k(D − T3 +Mg sinα)

=⇒ (1 + k)T3 = kD + µkMg cosα

Therefore the expressions for T1 and T3 are the same, so we have T1 = T3.

For the second result consider (1) + (3)− 2(5) to give:[
D − T1 −Mg sinα

]
+
[
D − T3 +Mg sinα

]
− 2
[
D − T2

]
= Ma1 +Ma3 − 2Ma2

2T2 − T1 − T3 = M
(
a1 + a3 − 2a2

)
2
(
T2 − T1

)
= M

(
a1 + a3 − 2a2

)
where the last step uses the fact that T1 = T3.

(ii)(a) If we can show that T2 > T1 then using the second result from part (i) will give a1+a3 > 2a2.

From earlier we have:

T1 =
kD + µkMg cosα

1 + k

Eliminating a2 from equations (5) and (6) gives:

T2 − µkMg = k
(
D − T2

)
=⇒ T2 =

kD + µkMg

1 + k

Then since cosα < 1 (as α < 90◦; we are not trying to drive up a vertical cliff face!) we have
T2 > T1, and so we have a1 + a3 > 2a2 =⇒ a2 <

1
2(a1 + a3).

Rearranging (2) and (4) to find a1 and a3 gives:

a1 =
1

kM

(
T1 − µkMg cosα− kMg sinα

)
a3 =

1

kM

(
T3 − µkMg cosα+ kMg sinα

)
and since T1 = T3 and sinα > 0 we have a3 > a1 =⇒ a3 >

1
2(a3 + a1). Putting these

together gives:

a2 <
1

2
(a1 + a3) < a3

as required.

Note that it seems very sensible that a3 > a1 — you would expect your acceleration going
down a slope to be greater than your acceleration going up!
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(ii)(b) This also seems like a sensible result!

It would probably be useful to have an expression of the form a2 − a1, and then try to show
that a2 − a1 > 0. It is usually easier to show that an inequality is positive or negative than
to compare non-zero values.

Adding equations (1) and (2) gives:

D −Mg sinα− µkMg cosα− kMg sinα = M(k + 1)a1 (7)

Adding (5) and (6) gives:
D − µkMg = M(k + 1)a2 (8)

Then using (8)− (7) gives:

M(k + 1)
(
a2 − a1

)
=
[
D − µkMg

]
−
[
D −Mg sinα− µkMg cosα− kMg sinα

]
M(k + 1)

(
a2 − a1

)
= M

[
g sinα+ µkg cosα+ kg sinα− µkg

]
(k + 1)

(
a2 − a1

)
= g sinα+ µkg cosα+ kg sinα− µkg

(k + 1)
(
a2 − a1

)
= (k + 1)g sinα+ µkg

(
cosα− 1

)
(k + 1)

(
a2 − a1

)
= (k + 1)g sinα− µkg

(
1− cosα

)
(*)

At this stage it’s not obvious what to try next. We know that µ < 1, so µk < k. We also
know that α < 90◦, but we really need a way to compare sinα and 1 − cosα. Using the
double angle formulae we have:

sinα = 2 sin
α

2
cos

α

2

1− cosα = 2 sin2 α

2

Substituting these into (∗) gives:

(k + 1)
(
a2 − a1

)
= (k + 1)g sinα− µkg

(
1− cosα

)
(k + 1)

(
a2 − a1

)
= 2(k + 1)g sin

α

2
cos

α

2
− 2µkg sin2 α

2

(k + 1)
(
a2 − a1

)
= 2g sin

α

2

[
(1 + k) cos

α

2
− µk sin

α

2

]
(†)

We have 1 + k > k > µk and we have cos
α

2
> sin

α

2
because

α

2
< 45◦. Hence the right hand

side of (†) is positive, and so we have a2 > a1.
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Question 10

10 In this question, the x- and y-axes are horizontal and the z-axis is vertically upwards.

(i) A particle Pα is projected from the origin with speed u at an acute angle α
above the positive x-axis.

The curve E is given by z = A−Bx2 and y = 0. If E and the trajectory of Pα
touch exactly once, show that

u2 − 2gA = u2
(
1− 4AB

)
cos2 α .

E and the trajectory of Pα touch exactly once for all α with 0 < α < 1
2π. Write

down the values of A and B in terms of u and g.

An explosion takes place at the origin and results in a large number of particles being
simultaneously projected with speed u in different directions. You may assume that
all the particles move freely under gravity for t > 0.

(ii) Describe the set of points which can be hit by particles from the explosion,
explaining your answer.

(iii) Show that, at a time t after the explosion, the particles lie on a sphere whose
centre and radius you should find.

(iv) Another particle Q is projected horizontally from the point (0, 0, A) with speed
u in the positive x direction.

Show that, at all times, Q lies on the curve E.

(v) Show that for particles Q and Pα to collide, Q must be projected a time
u(1− cosα)

g sinα
after the explosion.

Examiner’s report

Part (i) was answered well. Almost all candidates used the discriminant condition correctly, even if
their quadratic contained an error. The final two marks in this part were trickier to achieve. Many
candidates substituted two values for α and then solved for A,B. Of these, it was fairly common
for them to use α = 0, 12π which were excluded from the range being considered. Many missed that
one can simply set the coefficients of each side to zero. Some treated α as a variable to be solved
for rather than varied.

Part (ii) was found very tricky. Some candidates were able to guess or intuit that the safe zone
should be the parabola considered in part (i), but almost no candidate gave a proper explanation as
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to why it was only these points that could be reached. A few considered the 2D parabola correctly
but did not consider 3D. Some wondered about the presence of a “floor” at z = 0. This only
caused an issue if the candidate thought we were only interested in points of intersection with this
plane, possibly caused by imagining the problem in the context of artillery as it is often presented
in schools. In this case they answered with a circle and received no credit.

Part (iii) was fairly tough for most candidates. Many candidates who could not find the equation
of a circle/sphere would attempt an explanation in words, which was almost never sufficient to earn
credit. It was possible for candidates to guess the correct centre and radius with no mathematical
justification, but this earned no credit.

Many candidates who attempted part (iv) were able to complete it successfully.

Candidates who attempted part (v) were generally able to pick up at least one mark by appealing
to earlier calculations. Most appreciated the need to introduce separate times for Q and P , or a
time delay between the two.

Solution

(i) Initially we are only interested in the x−z plane, and there is no movement in the y direction.

The particle follows the trajectory x = ut cosα and z = ut sinα − 1
2gt

2. If it is to touch the
curve E then there has to be a repeated root of

ut sinα− 1
2gt

2 = A−B (ut cosα)2

Rearranging gives: (
Bu2 cos2 α− 1

2g
)
t2 + (u sinα)t−A = 0

For a repeated root we need the discriminant to be equal to zero.

u2 sin2 α+ 4A
(
Bu2 cos2 α− 1

2g
)

= 0

u2(1− cos2 α) + 4A
(
Bu2 cos2 α− 1

2g
)

= 0

u2 − u2 cos2 α+ 4ABu2 cos2 α− 2Ag = 0

=⇒ u2 − 2Ag = u2(1− 4AB) cos2 α

If the above is going to be true for all values of α then both the LHS and the RHS have to
equal to 0.

This means we have:

u2 − 2gA = 0 =⇒ A =
u2

2g

1− 4AB = 0 =⇒ B =
1

4A
=

g

2u2

A different method is to consider the fact that the path of the particle and curve E touch if
where they meet the gradients are the same.

The path of the particle is given by x = ut cosα and z = ut sinα − 1
2gt

2. Using t =
x

u cosα
to eliminate t in the z equation gives:

z = x tanα− gx2 sec2 α

2u2

=⇒ dz

dx
= tanα− gx sec2 α

u2
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Curve E has equation z = A−Bx2 and gradient
dz

dx
= −2Bx. Equating the gradients gives:

−2Bx = tanα− gx sec2 α

u2

=⇒ gx sec2 α

u2
= tanα+Bx (*)

and x =
u2 tanα

g sec2 α− 2Bu2
(�)

Equating expressions for z gives:

A−Bx2 = x tanα− gx2 sec2 α

2u2

A−Bx2 = x tanα− x

2

[
tanα+ 2Bx

]
using (∗)

A−Bx2 = x tanα− 1

2
x tanα−Bx2

=⇒ A =
1

2
x tanα

A =
u2 tan2 α

2(g sec2 α− 2Bu2)
using (†)

=⇒ 2gA sec2 α− 4ABu2 = u2 tan2 α

=⇒ 2gA− 4ABu2 cos2 α = u2 sin2 α

2gA− 4ABu2 cos2 α = u2(1− cos2 α)

=⇒ u2 − 2gA = u2(1− 4AB) cos2 α

(ii) If S is the surface formed when you rotate z = A−Bx2 around the z-axis, then the particle
cannot cross the boundary of S, so everything inside and on the boundary S could be hit.

(iii) Considering the particle path x = ut cosα, z = ut sinα− 1
2gt

2 we can eliminate cosα to get:

x2 +
(
z + 1

2gt
2
)2

= (ut)2

This is the equation of a circle in the x − z plane, with centre
(
0,−1

2gt
2
)

and radius ut. If
you rotate this around the z axis you get a sphere radius ut and centre

(
0, 0,−1

2gt
2
)

.

(iv) Particle Q follows the trajectory (ut, 0, A− 1
2gt

2). Eliminating t gives:

z = A− 1

2
g
(x
u

)2
z = A− g

2u2
x2

z = A−Bx2

therefore Q lies on the curve E.

40

https://maths.org/step/


maths.org/step

(v) First work out when P meets E. From part (i) this is when:

ut sinα− 1
2gt

2 = A−B (ut cosα)2

ut sinα− 1
2gt

2 =
u2

2g
− g

2u2
(ut cosα)2

ut sinα− 1
2gt

2 =
u2

2g
− g

2
(t cosα)2

ut sinα− 1
2gt

2 =
u2

2g
− g

2
t2
(
1− sin2 α

)
ut sinα =

u2

2g
+
g

2
t2 sin2 α

This can be rearranged to give:

=⇒ g2t2 sin2 α− 2gut sinα+ u2 = 0

(gt sinα− u)2 = 0

=⇒ t =
u

g sinα

At this time the x component of the position of P is given by x = ut cosα =
u2

g tanα
. The

time it takes Q to reach this x value if given by ut′, so we have:

t′ =
u

g tanα

The difference between the times it takes P and Q to reach this point is give:

t− t′ = u

g sinα
− u

g tanα

=
u(1− cosα)

g sinα

Therefore Q has to be projected a time
u(1− cosα)

g sinα
after the explosion.
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Question 11

11 (i) X1 and X2 are both random variables which take values x1, x2, . . . , xn, with
probabilities a1, a2, . . . , an and b1, b2, . . . , bn respectively.

The value of random variable Y is defined to be that of X1 with probability p
and that of X2 with probability q = 1− p.

If X1 has mean µ1 and variance σ21, and X2 has mean µ2 and variance σ22, find
the mean of Y and show that the variance of Y is pσ21 + qσ22 + pq(µ1 − µ2)2.

(ii) To find the value of random variable B, a fair coin is tossed and a fair six-sided
die is rolled. If the coin shows heads, then B = 1 if the die shows a six and
B = 0 otherwise; if the coin shows tails, then B = 1 if the die does not show a
six and B = 0 if it does. The value of Z1 is the sum of n independent values of
B, where n is large.

Show that Z1 is a Binomial random variable with probability of success 1
2 .

Using a Normal approximation, show that the probability that Z1 is within 10%
of its mean tends to 1 as n −→∞.

(iii) To find the value of random variable Z2, a fair coin is tossed and n fair six-sided
dice are rolled, where n is large. If the coin shows heads, then the value of Z2

is the number of dice showing a six; if the coin shows tails, then the value of Z2

is the number of dice not showing a six.

Use part (i) to write down the mean and variance of Z2.

Explain why a Normal distribution with this mean and variance will not be a
good approximation to the distribution of Z2.

Show that the probability that Z2 is within 10% of its mean tends to 0 as
n −→∞.

Examiner’s report

There were very few substantial attempts at this question overall.

In part (i) a large number of candidates incorrectly stated that Y = pX1 + qX2. However, there
were several good responses to this question with many candidates obtaining the correct value for
at least one of the mean and variance of Y .

Similarly, in part (ii) many candidates were able to compute the mean and variance of Z1 correctly.
However, several candidates only computed P(B = 1) when asked to justify that Z1 is a binomial
variable.
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Candidates generally struggled with part (iii), often comparing the variance and the mean incor-
rectly for the two facts that were required to be shown.

Solution

(i) The probability that Y takes the value xi is given by:

P(Y = xi) = pP(X1 = xi) + qP(X2 = xi) = pai + qbi

We have:

E(Y ) =
n∑
i=1

xiP(Y = xi)

=
n∑
i=1

xi
(
pai + qbi

)
= p

n∑
i=1

aixi + q
n∑
i=1

b1xi

= pµ1 + qµ2

Using Var(Y ) = E(Y 2)−
[
E(Y )

]2
:

Var(Y ) =

n∑
i=1

x2i
(
pai + qbi

)
−
[
pµ1 + qµ2

]2
= pE(X2

1 ) + qE(X2
2 )−

[
pµ1 + qµ2

]2
= p
(
σ21 + µ21

)
+ q
(
σ22 + µ22

)
−
[
pµ1 + qµ2

]2
= pσ21 + qσ22 + (p− p2)µ21 + (q − q2)µ22 − 2pqµ1µ2

= pσ21 + qσ22 + p(1− p)µ21 + q(1− q)µ22 − 2pqµ1µ2

= pσ21 + qσ22 + pqµ21 + pqµ22 − 2pqµ1µ2

= pσ21 + qσ22 + pq(µ1 − µ2)2

(ii) We have P(B = 1) = 1
2 ×

1
6 + 1

2 ×
5
6 = 1

2 = P(B = 0). The values of Z1 is the same as the
number of B values which equal 1, which is the same as the number of “successes” in n trials.

Z1 has mean 1
2n and variance 1

2×
1
2n = 1

4n. If n is “large enough” then Z1 can be approximated
with a normal distribution with the same mean and variance. The probability that Z1 is
within 10% of its mean is given by:

P
(
1
2n−

1
20n 6 Z1 6 1

2n+ 1
20n
)

≈P

(
1
2n−

1
20n−

1
2n

1
2

√
n

6 Φ 6
1
2n+ 1

20n−
1
2n

1
2

√
n

)
where Φ ∼ N(0, 1)

=P

(
− 1

10

√
n 6 Φ 6

1

10

√
n

)
=1− 2P

(
Φ >

1

10

√
n

)
Since we have P

(
Φ > 1

10

√
n
)
→ 0 as n → ∞, the probability that Z1 lies within 10% of its

mean tends to 1 as n→∞.
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(iii) The difference between this part and the previous part is that in part (ii) we are deciding
whether to look at if a single dice shows a six or not each time for n repeats. In part (iii)
we decide whether to count the number of sixes or the number of non-sixes for all n dice
simultaneously.

Using the results from part (i) gives:

E(Z2) = pµ1 + qµ2

= 1
2 ×

1
6n+ 1

2 ×
5
6n = 1

2n

Var = pσ21 + qσ22 + pq(µ1 − µ2)2

= 1
2 ×

5
36n+ 1

2 ×
5
36n+ 1

4

(
1
6n−

5
6n
)2

= 5
36n+ 1

4 ×
(
2
3n
)2

= 5
36n+ 1

9n
2

Z2 will take values either close to 1
6n, or close to 5

6n so it will be bi-modal, and hence the
normal distribution will not be a good approximation.

Let B1 be the number of sixes that are shown when the n dice are rolled, and let B2 be the
number of non-sixes, so E(B1) = 1

6n and E(B2) = 5
6n. In a similar way to part (ii) we can see

that as n→∞, the probability that B1 lies within 10% of its mean tends to 1, and similarly
for B2. This means that we have :

P
(

9
10 ×

1
6n 6 B1 6 11

10 ×
1
6n
)
→ 1

P
(

9
60 6 B1 6 11

60

)
→ 1

and

P
(

9
10 ×

5
6n 6 B2 6 11

10 ×
5
6n
)
→ 1

P
(
45
60 6 B2 6 55

60

)
→ 1

Then as Z2 with either take the value of B1 or B2 then as n → ∞, Z2 will lie either in the
range

[
9
60n,

11
60n
]

or
[
45
60n,

55
60n
]
.

If Z2 is to be within 10% of its mean then we need:

Z2 ∈ [ 9
10 ×

1
2n,

11
10 ×

1
2n]

Z2 ∈ [2760n,
33
60n]

There is no overlap between the range we want Z2 to lie in and the ranges that B1 and B2

tend to as n → ∞, hence the probability that Z2 lies within 10% of its mean tends to 0 as
n→∞.

It is perhaps surprising that two processes which on the surface seem very similar lead to
very different results!
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Question 12

12 Each of the independent random variables X1, X2, . . . , Xn has the probability density
function f(x) = 1

2 sinx for 0 6 x 6 π (and zero otherwise). Let Y be the random
variable whose value is the maximum of the values of X1, X2, . . . , Xn.

(i) Explain why P(Y 6 t) =
[
P(X1 6 t)

]n
and hence, or otherwise, find the

probability density function of Y .

Let m(n) be the median of Y and µ(n) be the mean of Y .

(ii) Find an expression form(n) in terms of n. How doesm(n) change as n increases?

(iii) Show that

µ(n) = π − 1

2n

∫ π

0
(1− cosx)n dx .

(a) Show that µ(n) increases with n.

(b) Show that µ(2) < m(2).

Examiner’s report

This was the more popular of the two “Probability and Statistics” questions and a larger number
of substantial attempts was seen.

Part (i) was generally completed well although in some cases there was insufficient explanation
that “Y 6 t” is equivalent to “Xi 6 t for all i”.

Many candidates successfully calculated the value of m(n) for part (ii), but some only stated that
m(n) increases, rather than considering the value of the limit.

In part (iii) many candidates successfully showed the formula for µ(n). A number of candidates
attempted to prove that µ(n) is increasing by differentiating with respect to n and showing that
this is a positive quantity. However, none of these candidates were able to produce a fully correct
version of this approach.

In part (iii) (b) most candidates were able to calculate µ(2) correctly, but then a number of errors
were seen in the subsequent argument. Common errors were to fail to consider which choice of
square root is appropriate and to omit to consider the effect of squaring on an inequality.
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Solution

(i) If we are going to have Y 6 t, then we need all of the Xi 6 t. The Xi are independent and
all have the same probability density function, hence we have:

P(Y 6 t) =
[
P(X1 6 t)

]n
Looking at X1 we have:

P(X1 6 t) =

∫ t

0

1
2 sinx dx

=
[
− 1

2 cosx
]t
0

= 1
2(1− cos t)

and so we have:
P(Y 6 t) = 1

2n

[
1− cos t

]n
Differentiating to find the pdf of Y gives:

fY (t) =
n sin t

2n
(1− cos t)n−1

(ii) To find the median we need:

P(Y 6 m) = 1
2

1
2n

[
1− cosm

]n
= 1

2[
1− cosm

]n
= 2n−1

1− cosm = 2
n−1
n

=⇒ m(n) = cos−1
(
1− 2

n−1
n
)

As n→∞ we have 2
n−1
n → 2, and so m(n)→ cos−1(−1) = π. As n increases, 21−

1
n increases

and so cos−1
(

1− 21−
1
n

)
increases towards π.

This Desmos Graph shows how the pdf of Y changes as n increases. This might help you
visualise what happens to the median as n increases.

(iii) We have:

µ(n) =

∫ π

0
x× n sinx

2n
(1− cosx)n−1 dx

Noting that
d

dx
(1− cosx)n = n sinx(1− cosx)n−1 we have:

µ(n) =
[ x

2n
(1− cosx)n

]π
0
−
∫ π

0

1

2n
(1− cosx)n dx

=
π

2n
× 2n − 0−

∫ π

0

1

2n
(1− cosx)n dx

= π −
∫ π

0

1

2n
(1− cosx)n dx

as required.
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(a) We have:

µ(n) = π −
∫ π

0

(
1− cosx

2

)n
dx

We have 0 <
1− cosx

2
< 1, and so as n increases we have

(
1− cosx

2

)n
→ 0 as n→∞.

So µ(n)→ π as n→∞ (i.e. µ(n) increases as n increases).

(b) We have:

µ(2) = π −
∫ π

0

(
1− cosx

2

)2

dx

= π − 1
4

∫ π

0
1− 2 cosx+ cos2 x dx

= π − 1
4

∫ π

0
1− 2 cosx+ 1

2(1 + cos 2x) dx

= π − 1
4

∫ π

0

3
2 − 2 cosx+ 1

2 cos 2x dx

= π − 1
4

[
3
2x− 2 sinx+ 1

4 sin 2x
]π
0

= π − 3
8π

= 5
8π

If µ(2) < m(2), then we must have P
[
Y 6 µ(2)

]
< 0.5 (i.e. µ is less than the median).

We have:

P
[
Y 6 µ(2)

]
= P

[
Y 6 5

8π
]

=
1

22
(
1− cos 5

8π
)2

Evaluating cos 5
8π:

cos 5
8π = cos

(π
2

+
π

8

)
= cos

π

2
cos

π

8
− sin

π

2
sin

π

8

= − sin
π

8

Then using cos 2A = 1− 2 sin2A gives:

sin2 π
8 = 1

2

(
1− cos π4

)
sin2 π

8 = 1
2

(
1−

√
2
2

)
sin2 π

8 = 2−
√
2

4

=⇒ sin π
8 =

√
2−
√

2

2

Noting that since π
8 < π, sin π

8 > 0.
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This means that we have cos 5π
8 = − sin π

8 = −
√

2−
√
2

2 , and so:

P
[
Y 6 µ(2)

]
=

1

22
(
1− cos 5

8π
)2

=
1

4

(
1 +

√
2−
√

2

2

)2

=
1

16

(
2 +

√
2−
√

2

)2

We want P
[
Y 6 µ(2)

]
< 0.5:

1

16

(
2 +

√
2−
√

2

)2

<
1

2

⇐⇒
(

2 +

√
2−
√

2

)2

< 8

⇐⇒ 2 +

√
2−
√

2 < 2
√

2

⇐⇒
√

2−
√

2 < 2
√

2− 2

⇐⇒ 2−
√

2 < (2
√

2− 2)2

⇐⇒ 2−
√

2 < (
√

2)2(2−
√

2)2

⇐⇒ 1 < 2(2−
√

2)

⇐⇒ 2
√

2 < 3

⇐⇒ 8 < 9

Note that all of these steps are valid and reversible as we have 2−
√

2 > 0.

Therefore we have P
[
Y 6 µ(2)

]
< 0.5 and so µ(2) < m(2).
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