STEP Support Programme - Cambridge state school offer-holders day Workshop 1 Questions

$1 \quad 2014$ S3 Q6

Starting from the result that

$$
\mathrm{h}(t)>0 \text { for } 0<t<x \Longrightarrow \int_{0}^{x} \mathrm{~h}(t) \mathrm{d} t>0
$$

show that, if $\mathrm{f}^{\prime \prime}(t)>0$ for $0<t<x_{0}$ and $\mathrm{f}(0)=\mathrm{f}^{\prime}(0)=0$, then $\mathrm{f}(t)>0$ for $0<t<x_{0}$.
(i) Show that, for $0<x<\frac{1}{2} \pi$,

$$
\cos x \cosh x<1
$$

(ii) Show that, for $0<x<\frac{1}{2} \pi$,

$$
\frac{1}{\cosh x}<\frac{\sin x}{x}<\frac{x}{\sinh x}
$$

2014 S3 Q7
The four distinct points $P_{i}(i=1,2,3,4)$ are the vertices, labelled anticlockwise, of a cyclic quadrilateral. The lines $P_{1} P_{3}$ and $P_{2} P_{4}$ intersect at Q.
(i) By considering the triangles $P_{1} Q P_{4}$ and $P_{2} Q P_{3}$ show that $\left(P_{1} Q\right)\left(Q P_{3}\right)=\left(P_{2} Q\right)\left(Q P_{4}\right)$.
(ii) Let \mathbf{p}_{i} be the position vector of the point $P_{i}(i=1,2,3,4)$. Show that there exist numbers a_{i}, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i}=0 \quad \text { and } \quad \sum_{i=1}^{4} a_{i} \mathbf{p}_{i}=\mathbf{0} \tag{*}
\end{equation*}
$$

(iii) Let $a_{i}(i=1,2,3,4)$ be any numbers, not all zero, that satisfy $(*)$. Show that $a_{1}+a_{3} \neq 0$ and that the lines $P_{1} P_{3}$ and $P_{2} P_{4}$ intersect at the point with position vector

$$
\frac{a_{1} \mathbf{p}_{1}+a_{3} \mathbf{p}_{3}}{a_{1}+a_{3}}
$$

Deduce that $a_{1} a_{3}\left(P_{1} P_{3}\right)^{2}=a_{2} a_{4}\left(P_{2} P_{4}\right)^{2}$.

$3 \quad 2014$ S3 Q8

The numbers $\mathrm{f}(r)$ satisfy $\mathrm{f}(r)>\mathrm{f}(r+1)$ for $r=1,2, \ldots$ Show that, for any non-negative integer n,

$$
k^{n}(k-1) \mathrm{f}\left(k^{n+1}\right) \leqslant \sum_{r=k^{n}}^{k^{n+1}-1} \mathrm{f}(r) \leqslant k^{n}(k-1) \mathrm{f}\left(k^{n}\right)
$$

where k is an integer greater than 1.
(i) By taking $\mathrm{f}(r)=1 / r$, show that

$$
\frac{N+1}{2} \leqslant \sum_{r=1}^{2^{N+1}-1} \frac{1}{r} \leqslant N+1
$$

Deduce that the sum $\sum_{r=1}^{\infty} \frac{1}{r}$ does not converge.
(ii) By taking $\mathrm{f}(r)=1 / r^{3}$, show that

$$
\sum_{r=1}^{\infty} \frac{1}{r^{3}} \leqslant 1 \frac{1}{3}
$$

(iii) Let $S(n)$ be the set of positive integers less than n which do not have a 2 in their decimal representation and let $\sigma(n)$ be the sum of the reciprocals of the numbers in $S(n)$, so for example $\sigma(5)=1+\frac{1}{3}+\frac{1}{4}$. Show that $S(1000)$ contains $9^{3}-1$ distinct numbers.

Show that $\sigma(n)<80$ for all n.

