

STEP Support Programme - Cambridge state school offer-holders day Workshop 1 Questions

1 2014 S3 Q6

Starting from the result that

$$\mathbf{h}(t) > 0 \text{ for } 0 < t < x \Longrightarrow \int_0^x \mathbf{h}(t) \, \mathrm{d}t > 0 \,,$$

show that, if f''(t) > 0 for $0 < t < x_0$ and f(0) = f'(0) = 0, then f(t) > 0 for $0 < t < x_0$.

(i) Show that, for $0 < x < \frac{1}{2}\pi$,

 $\cos x \cosh x < 1 \,.$

(ii) Show that, for $0 < x < \frac{1}{2}\pi$,

$$\frac{1}{\cosh x} < \frac{\sin x}{x} < \frac{x}{\sinh x} \,.$$

2 2014 S3 Q7

The four distinct points P_i (i = 1, 2, 3, 4) are the vertices, labelled anticlockwise, of a cyclic quadrilateral. The lines P_1P_3 and P_2P_4 intersect at Q.

- (i) By considering the triangles P_1QP_4 and P_2QP_3 show that $(P_1Q)(QP_3) = (P_2Q)(QP_4)$.
- (ii) Let \mathbf{p}_i be the position vector of the point P_i (i = 1, 2, 3, 4). Show that there exist numbers a_i , not all zero, such that

$$\sum_{i=1}^{4} a_i = 0 \quad \text{and} \quad \sum_{i=1}^{4} a_i \mathbf{p}_i = \mathbf{0}.$$
 (*)

(iii) Let a_i (i = 1, 2, 3, 4) be any numbers, not all zero, that satisfy (*). Show that $a_1 + a_3 \neq 0$ and that the lines P_1P_3 and P_2P_4 intersect at the point with position vector

$$\frac{a_1\mathbf{p}_1 + a_3\mathbf{p}_3}{a_1 + a_3} \,.$$

Deduce that $a_1a_3(P_1P_3)^2 = a_2a_4(P_2P_4)^2$.

3 2014 S3 Q8

The numbers f(r) satisfy f(r) > f(r+1) for $r = 1, 2, \ldots$ Show that, for any non-negative integer n,

$$k^{n}(k-1) f(k^{n+1}) \leq \sum_{r=k^{n}}^{k^{n+1}-1} f(r) \leq k^{n}(k-1) f(k^{n})$$

where k is an integer greater than 1.

(i) By taking f(r) = 1/r, show that

$$\frac{N+1}{2} \leqslant \sum_{r=1}^{2^{N+1}-1} \frac{1}{r} \leqslant N+1.$$

Deduce that the sum $\sum_{r=1}^{\infty} \frac{1}{r}$ does not converge.

(ii) By taking $f(r) = 1/r^3$, show that

$$\sum_{r=1}^\infty \frac{1}{r^3}\leqslant 1\tfrac{1}{3}\,.$$

(iii) Let S(n) be the set of positive integers less than n which do not have a 2 in their decimal representation and let $\sigma(n)$ be the sum of the reciprocals of the numbers in S(n), so for example $\sigma(5) = 1 + \frac{1}{3} + \frac{1}{4}$. Show that S(1000) contains $9^3 - 1$ distinct numbers.

Show that $\sigma(n) < 80$ for all n.

