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STEP Support Programme - Cambridge state school offer-holders day
Workshop 1 Solutions

In these solutions I have written more detail than you would expect in a STEP exam question
solution. In an exam situation I would use more notation e.g.“ =⇒ ”, and possibly use arrows etc.
to show my reasoning, for example where I have used a result elsewhere in the question. I would
also be more inclined to use sketches and diagrams that I am when LATEX-ing up solutions.
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Let 0 < u < x0, so we have f ′′(t) > 0 for 0 < t < u. Therefore (using the given result) we
have: ∫ u

0
f ′′(t) dt > 0

=⇒ f ′(u)− f ′(0) > 0

=⇒ f ′(u) > 0 since f ′(0) = 0

We now have f ′(u) > 0 for 0 < u < x0. Let 0 < v < x0 so we have f ′(u) > 0 for 0 < u < v.
Therefore: ∫ v

0
f ′(u) du > 0

=⇒ f(v)− f(0) > 0

=⇒ f(v) > 0 since f(0) = 0

We have now shown that if f ′′(t) > 0 for 0 < t < x0 and f(0) = f ′(0) = 0 then f(v) > 0 for
0 < v < x0 or equivalently we can say f(t) > 0 for 0 < t < x0.

The first time I attempted this question I started by showing that f ′(x0) > 0 but then
realised that I really wanted a variable rather than x0 in the derivative so I had to change
my argument. For the very last part we have essentially used a substitution of t = v.

(i) Here we are trying to show that something is less than 1, but the stem of the question
was about showing that something is greater than 0. It might be a good idea to arrange
the given inequality to match what we have in the stem!1

We want to show that cosx coshx < 1 or equivalently that 1 − cosx coshx > 0. Let
f(x) = 1− cosx coshx.

If we want to use the stem result then we must show that the conditions of the stem
are satisfied.

Note that in this case x0 = 1
2π. We have:

f(x) = 1− cosx coshx

=⇒ f ′(x) = 0 + sinx coshx− cosx sinhx

=⇒ f ′′(x) =((((
((

cosx coshx+ sinx sinhx+ sinx sinhx−(((((
(

cosx coshx

= 2 sinx sinhx

1As a general rule, when trying to show that an inequality is true it is often easier to rearrange and show that
something is positive or negative.
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In the range 0 < x < 1
2π we have sinx > 0 and sinhx > 0, so we have

f ′′(x) = 2 sinx sinhx > 0 for 0 < x < 1
2π.

We also have:

f(0) = 1− cos 0 cosh 0 = 1− 1 = 0

f ′(0) = sin 0 cosh 0− cos 0 sinh 0 = 0− 0 = 0

Hence the conditions in the stem apply, and so we have f(x) > 0 and so:

1− cosx coshx > 0 =⇒ cosx coshx < 1

(ii) Here there are two inequalities to consider.

Start by considering
1

coshx
<

sinx

x
. In the range 0 < x < 1

2π both x > 0 and

coshx > 0 so we can legitimately2 rearrange the inequality to get x < sinx coshx or
(more usefully) sinx coshx− x > 0.

Let f(x) = sinx coshx− x.

f ′(x) = sinx sinhx+ cosx coshx− 1

=⇒ f ′′(x) =((((
((

sinx coshx+ cosx sinhx+ cosx sinhx−((((((sinx coshx

= 2 cosx sinhx

and as both cosx > 0 and sinhx > 0 for 0 < x < 1
2π we have f ′′(x) > 0.

We also have:

f(0) = sin 0 cosh 0− 0 = 0

f ′(0) = sin 0 sinh 0 + cos 0 cosh 0− 1 = 0 + 1− 1 = 0

Hence we can use the result from the stem and we have

sinx coshx− x > 0 =⇒ 1

coshx
<

sinx

x

Now consider
sinx

x
<

x

sinhx
. Since both x > 0 and sinhx > 0 for 0 < x < 1

2π we can

rearrange to get x2 − sinx sinhx > 0.

Let f(x) = x2 − sinx sinhx.

f ′(x) = 2x− cosx sinhx− sinx coshx

=⇒ f ′′(x) = 2 +((((
((

sinx sinhx− cosx coshx− cosx coshx−((((((sinx sinhx

= 2− 2 cosx coshx

At first it looks like we are going to have to do some work to show that f ′′(x) > 0 but
in part (i) we showed that cosx coshx < 1 which implies that 1− cosx coshx > 0 and
so we have f ′′(x) = 2(1− cosx coshx) > 0.

2When rearranging inequalities always consider whether you might be multiplying or dividing by something
negative. Sketching a graph can often be a safer way to deal with inequalities.
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We also have:

f(0) = 02 − sin 0 sinh 0 = 0

f ′(0) = 2× 0− cos 0 sinh 0− sin 0 cosh 0 = 0

Hence we can use the stem result and so we have:

x2 − sinx sinhx > 0 =⇒ sinx

x
<

x

sinhx

and therefore we have shown that:

1

coshx
<

sinx

x
<

x

sinhx

Note that you can use the ”stem” result to do the rest of the question even if you could not
work out how to show the stem result to be true - and similarly you can use the result in (i)
to help you to do part (ii) even if you couldn’t show (i) to be true.

Originally this question had another part: “Show that, for 0 < x < 1
2π, tanhx < tanx”, but

it was decided that this made the question too long and it was cut.
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Like most vector questions, it is a good idea to start with a diagram, such as below:

(i) Note that the lines P1P4 and P2P3 are not (necessarily) parallel, so we cannot use
alternate angles.

We have:

∠P3P2Q = ∠P4P1Q angles subtended by the same arc are equal

∠P2P3Q = ∠P1P4Q angles subtended by the same arc are equal

∠P3QP2 = ∠P4QP1 vertically opposite angles are equal

Hence the three angles are equal and so the triangles P1QP4 and P2QP3 are similar.

You can use “angles in the same segment are equal” or any other way of stating this
theorem!

Since the triangles are similar and P2Q corresponds to P1Q etc we have:

P2Q = c× P1Q =⇒ c =
P2Q

P1Q

P3Q = c× P4Q =⇒ c =
P3Q

P4Q

Where c is the scale factor of the enlargement. Equating the expressions for c gives:

P2Q

P1Q
=
P3Q

P4Q
=⇒ (P3Q)(P1Q) = (P2Q)(P4Q)

as required. My final answer does not look exactly the same as the one in the question,
but it is equivalent so this is fine!

(ii) Since Q is on the line P1P3 we can write the position vector of Q as:

q = p1 + λ(p3 − p1)

and since Q also lies on P2P4 we have:

q = p2 + µ(p4 − p2)
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Equating expressions for q gives us:

p1 + λ(p3 − p1) = p2 + µ(p4 − p2)

(1− λ)p1 + λp3 = (1− µ)p2 + µp4

(1− λ)p1 + (µ− 1)p2 + λp3 − µp4 = 0

So we have
4∑

i=1

aipi = 0 where a1, a2, a3, a4 = (1 − λ), (µ − 1), λ,−µ, and so we also

have a1 + a2 + a3 + a4 = 0 (and not all of the ai can be simultaneously zero).

(iii) If we take a1 +a3 = 0, then by (∗) we also have a2 +a4 = 0. So we have a3 = −a1 and
a4 = −a2. Substituting into the second part of (∗) gives:

a1p1 + a2p2 − a1p3 − a2p4 = 0

=⇒ a1(p1 − p3) = a2(p4 − p2)

=⇒ P1P3 ‖ P2P4

But P1P3 cannot be parallel to P2P4 as the points are distinct (look at the diagram!),
and so we have a1 + a3 6= 0 by contradiction (and similarly we know that a2 + a4 6= 0).

We know that a1 + a3 = −(a2 + a4) and that a1p1 + a3p3 = −(a2p2 + a4p4) and so
we have:

a1p1 + a3p3

a1 + a3
=
a2p2 + a4p4

a2 + a4

Considering the LHS gives us:

a1p1 + a3p3

a1 + a3
=

(a1 + a3)p1 − a3p1 + a3p3

a1 + a3

= p1 +
a3

a1 + a3
(p3 − p1)

and so this point lies on the line P1P3. Using the RHS we have:

a2p2 + a4p4

a2 + a4
=

(a2 + a4)p2 − a4p2 + a4p4

a2 + a4

= p2 +
a4

a2 + a4
(p4 − p2)

and so the point also lies on the line P2P4, and so it must be where the two lines
intersect i.e.:

q =
a1p1 + a3p3

a1 + a3
=
a2p2 + a4p4

a2 + a4

Substituting this into the result from part (i) we have:

(P3Q)(P1Q) = (P2Q)(P4Q) =⇒(
p3 −

a1p1 + a3p3

a1 + a3

)(
p1 −

a1p1 + a3p3

a1 + a3

)
=

(
p2 −

a2p2 + a4p4

a2 + a4

)(
p4 −

a2p2 + a4p4

a2 + a4

)

��
��

��1

(a1 + a3)2
(
a1p3 − a1p1

)(
a3p1 − a3p3

)
=
��

��
��1

(a2 + a4)2
(
a4p2 − a4p4

)(
a2p4 − a2p2

)
−a1(p3 − p1)× a3(p3 − p1) = −a4(p2 − p4)× a2(p2 − p4)

a1a3(P1P3)
2 = a2a4(P2P4)

2
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If we expand the sum we get:

kn+1−1∑
r=kn

f(r) = f(kn) + f(kn + 1) + f(kn + 2) + · · ·+ f(kn+1 − 1)

There are (kn+1− 1)− (kn− 1) = kn+1− kn = kn(k− 1) terms here and since f(r) > f(r+ 1)

they are all less than or equal to f(kn). Hence we have
kn+1−1∑
r=kn

f(r) 6 kn(k − 1)× f(kn).

Similarly, all of the terms must be greater than f(kn+1) (as the last term is f(kn+1 − 1) and

so we have
kn+1−1∑
r=kn

f(r) > kn(k − 1)× f(kn+1).

The lower limit could actually be given as a strict inequality, but we could have equality for
the upper limit in the case when k = 2, n = 1. Worrying about strict or non strict limits is
a good habit to get into, but don’t spend too much time on this during an exam!

(i) f(r) = 1/r satisfies the requirements of f(r) > f(r + 1), so we can use the result shown
in the stem.

Comparing the top limits of the sum in this part and the sum in the stem, take k = 2
(don’t worry about the bottom limit for now). This gives us:

2n × 1× f(2n+1) 6
2n+1−1∑
r=2n

f(r) 6 2n × 1× f(2n)

2n

2n+1
6

2n+1−1∑
r=2n

1

r
6

2n

2n

1

2
6

2n+1−1∑
r=2n

1

r
6 1

The requested sum runs from r = 1 to r = 2N+1 − 1. We can split this sum up as:

2N+1−1∑
r=1

=

20+1−1∑
r=20

+

21+1−1∑
r=21

+

22+1−1∑
r=22

+

23+1−1∑
r=23

+ · · ·+
2N+1−1∑
r=2N

Each of these sums is bounded below by
1

2
and above by 1, and there are N + 1 of

them, hence:

N + 1

2
6

2N+1−1∑
r=1

1

r
6 N + 1

As N →∞ we have N+1
2 →∞ and hence

∞∑
r=1

1
r does not converge.
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(ii) Here f(r) =
1

r3
, and taking k = 2 again gives:

2n+1−1∑
r=2n

1

r3
6 2n × 1

(2n)3
=⇒

2n+1−1∑
r=2n

1

r3
6

1

22n

from the stem result.

Splitting the sum in the same way as in part (i) gives us:

2N+1−1∑
r=1

1

r3
6

1

20
+

1

22
+

1

24
+ · · ·+ 1

22N

This is a geometric series with first term 1 and common ratio 1
4 , so the sum to infinity

is
1

1− 1
4

= 4
3 . Hence we have:

∞∑
r=1

1

r3
6

4

3

(iii) S(1000) is the set of positive integers less than 1000 (so at most 999) which do not
have a 2 in their decimal representation. So we have 9 options for the first digit
(0,1,3,4,5,6,7,8,9), 9 options for the second digit and 9 options for the third digit.
However we need to exclude the case of picking “000”, so in total there are 93 − 1
distinct numbers in S(1000).

For the last part, start by considering σ(10), σ(100) etc.

S(10) = 1, 3, 4, 5, 6, 7, 8, 9 (i.e. has 8 members) and so
σ(10) = 1 + 1

3 + 1
4 + · · ·+ 1

8 + 1
9 < 8× 1 = 8.

S(100) = 1, 3, · · · , 9, 10, 11, 13, · · · , 19, 30, 31, ... and so it has 8+8×9 members (it has
8 one-digit members and then 8 sets of two-digit members each with 9 possibilities for
the second digit - as 0 is now a possibility!).

We have:

σ(100) =
(

1 +
1

3
+

1

4
+ · · ·+ 1

8
+

1

9

)
+
( 1

10
+

1

11
+

1

13
+ · · ·+ 1

18
+

1

19

)
+
( 1

30
+

1

31
+

1

33
+ · · ·+ 1

39

)
+ · · ·

+
( 1

90
+

1

91
+

1

93
+ · · ·+ 1

99

)
< 8× 1 + 8× 9× 1

10
= 8 + 8× 9

10

Now consider σ(1000). This has 8 one-digit members, 8 × 9 two-digit members and
8× 9× 9 three-digit members. In σ(1000) the reciprocals of the one-digit members are
all less than or equal to 1, the reciprocals of the two-digit members are all less than or
equal to 1

10 and the reciprocals of the three-digit members are all less than or equal to
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1
100 . So we have:

σ(1000) < 8× 1 + 8× 9× 1

10
+ 8× 9× 9× 1

100

= 8 + 8× 9

10
+ 8×

(
9

10

)2

Following the same argument we have:

σ(10N ) < 8 + 8× 9

10
+ 8×

(
9

10

)2

+ · · ·+ 8×
(

9

10

)N−1

This is another geometric series, and the sum to infinity is given by
8

1− 9
10

= 80, hence

we have σ(n) < 80 for all n.

The “point” of this last bit is that in part (i) you showed that
∑ 1

r does not converge (is
unbounded above), but if instead you sum all the reciprocals of the integers which do not
contain a digit 2 you get a sum which is bounded above by 80. This initially seems rather
surprising, but large numbers are very likely to contain a digit of 2 (or any other digit!) so
as the sequence goes on more and more numbers are excluded.

You can read more about Kempner Series here.
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