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STEP Support Programme - Cambridge state school offer-holders day
Workshop 2 Questions: Solutions

For all of these questions note that these are final solutions, what you cannot see are the crossings
out, wrong turns, places where working in two directions meets in the middle etc. There are
more explanations and other commentary that you would not be expected to include. You are not
expected to produce solutions that look like these in the exams!

1 2013 S2 Q11
The key thing here is a system of labelling the velocities which is easy to follow. I have
used u1, u2, u3 for the initial velocities, v1, v2, v3 for the velocities after the first collision,
w1, w2, w3 for the velocities after the second collision and y1, y2, y3 for the velocities after the
third collision.1

The starting values are u1 = u, u2 = 0 and u3 = 0. All the masses are the same so we will
call them all m.

(i) For the first collision we have:

Conservation of momentum: mu = mv1 +mv2 =⇒ u = v1 + v2 (1)

Law of restitution: eu = v2 − v1 (2)

Labelling your equations helps to make your method clear. You can use numbers,
letters, or things like (∗) and (†).

Solving these simultaneously gives:

(1)− (2) =⇒ v1 = 1
2u(1− e)

(1) + (2) =⇒ v2 = 1
2u(1 + e) .

Note that v2 > v1 which is what we would expect (particle 1 cannot pass through
particle 2).2

For the second collision (which will be between particles 2 and 3) we have:

Conservation of momentum: mv2 = mw2 +mw3 =⇒ v2 = w2 + w3

Law of restitution: ev2 = w3 − w2

Solving these in exactly the same way as before gives:

w2 = 1
2v2(1− e)

w3 = 1
2v2(1 + e)

and we also have w1 = v1, as nothing has collided with particle 1 during this collision.

1You can use different labelling systems, but whatever you choose it is helpful to define everything clearly. Some
of these values will be unchanged at a collision but I found it easier to change all of the labels at each collision.

2It is a good idea to check that your answers are sensible at each stage — it means that you can “catch” any
mistakes quicker.
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Substituting v2 = 1
2u(1+e) into the expressions for w2 and w3 gives the velocities after

the second collision as:

w1 = 1
2u(1− e)

w2 = 1
2(1− e)× 1

2u(1 + e) = 1
4u(1− e2)

w3 = 1
2(1 + e)× 1

2u(1 + e) = 1
4u(1 + e)2

From above, we have w3 > w2, as makes sense. For a third collision we need to have
w1 > w2. Consider w1 − w2:

3

w1 − w2 = 1
2u(1− e)− 1

4u(1− e2)
= 1

4u
(
2(1− e)− (1− e2)

)
= 1

4u
(
1− 2e+ e2

)
= 1

4u(1− e)2

and since e < 1 (i.e. is not equal to 1 which would mean w1 = w2) we know that
w1 − w2 > 0 and hence w1 > w2 and there will be another collision for all values of e
where 0 < e < 1.

(ii) For the third collision we have:

Conservation of momentum: mw1 +mw2 = my1 +my2 =⇒ w1 + w2 = y1 + y2

Law of restitution: e(w1 − w2) = y2 − y1

Pausing to think for a moment, we want to show that there will be a fourth collision
which means we want y2 > w3. Hence we don’t actually need to find y1!

Solving the equations for y2 gives:

y2 = 1
2(w1 + w2 + ew1 − ew2)

= 1
2 (w1(1 + e) + w2(1− e))

= 1
2

(
1
2u(1− e)(1 + e) + 1

4u(1− e2)(1− e)
)

= 1
8

(
2u(1− e)(1 + e) + u(1− e2)(1− e)

)

3If you need to show that A > B it is often easier to show that A−B > 0.
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We have a fourth collision iff4 y2 − w3 > 0, so we want:

1
8

(
2u(1− e)(1 + e) + u(1− e2)(1− e)

)
− 1

4u(1 + e)2 > 0
1
8u(1 + e)

(
2(1− e) + (1− e)2 − 2(1 + e)

)
> 05

1
8u(1 + e)

(
e2 − 6e+ 1

)
> 0

u and 1 + e are both positive, so we need e2 − 6e + 1 > 0. Solving e2 − 6e + 1 = 0

gives the solutions e =
6±
√

32

2
= 3±

√
8 and — remembering that 0 < e < 1 — we

can conclude that there will be a fourth collision iff 0 < e < 3−
√

8.

When solving the inequality e2 − 6e + 1 > 0 it may be helpful to do a (very) rough
sketch of the quadratic.

This is the sort of question where a stray negative sign can cause havoc. Checking that your
answers are sensible at each stage is a good way of catching a mistake before it gets much
further. However in an exam situation you need to weigh up the benefit of spending time
tracking down the mistake against the benefit of trying another question.

4If and only if.
5When simplifying expressions it is almost always a good idea to factorise out any common factors first.
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Here we need the definitions of E(X), Var (X), the probabilities of the Poisson distribution

P(U = r) =
e−λλr

r!
and the variance of the Poisson distribution, Var (U) = λ. Everything

else is manipulating sums and equations.

(i) We have:

E(X) = 1× e−λλ1

1!
+ 3× e−λλ3

3!
+ 5× e−λλ5

5!
+ . . .

= e−λλ1 + �3×
e−λλ3

�3× 2!
+ �5×

e−λλ5

�5× 4!
+ . . .

= e−λλ

(
1 +

λ2

2!
+
λ4

4!
+ . . .

)
= e−λλα .

Similarly:

E(Y ) = 2× e−λλ2

2!
+ 4× e−λλ4

4!
+ 6× e−λλ6

6!
+ . . .

= e−λλ

(
λ+

λ3

3!
+
λ5

5!
+ . . .

)
= e−λλβ .

(ii) We have Var (X) = E(X2)− [E(X)]2. First find E(X2):

E(X2) = 12 × e−λλ1

1!
+ 32 × e−λλ3

3!
+ 52 × e−λλ5

5!
+ . . .

= e−λλ1 + �3× 3× e−λλ3

�3× 2!
+ �5× 5× e−λλ5

�5× 4!
+ . . .

= e−λλ

(
1 +

3λ2

2!
+

5λ4

4!
+ . . .

)
= e−λλ

(
1 +

(1 + 2)λ2

2!
+

(1 + 4)λ4

4!
+ . . .

)
= e−λλ

(
1 +

λ2

2!
+
�2λ2

�2× 1!
+
λ4

4!
+
�4λ4

�4× 3!
+ . . .

)
= e−λλ

(
1 +

λ2

2!
+
λ4

4!
+ . . .+ λ

[
λ

1!
+
λ3

3!
+ . . .

])
= e−λλ (α+ λβ)
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Then we have:

Var (X) = E(X2)− [E(X)]2

= e−λλ (α+ λβ)−
(

e−λλα
)2

which is not quite the required result. However, we have:

α+ β = 1 +
λ

1!
+
λ2

2!
+
λ3

3!
+
λ4

4!
+ . . . = eλ

and hence e−λ =
1

α+ β
. This gives Var (X) =

λα+ λ2β

α+ β
− λ2α2

(α+ β)2
.

The same approach gives Var (Y ) =
λβ + λ2α

α+ β
− λ2β2

(α+ β)2
.

You would need to show some working for this part as well! Perhaps not quite as much
as for Var(X), as that was a “show that”, but more than I have done here.

For the last part, start by noting that Var (X + Y ) = Var (U) = λ. We then want to
find non-zero values of λ for which:

λα+ λ2β

α+ β
− λ2α2

(α+ β)2
+
λβ + λ2α

α+ β
− λ2β2

(α+ β)2
= λ

i.e. λ(α+ λβ)(α+ β)− λ2α2 + λ(β + λα)(α+ β)− λ2β2 = λ(α+ β)2

Then either λ = 0, or:

(α+ λβ)(α+ β)− λα2 + (β + λα)(α+ β)− λβ2 = (α+ β)2

��α
2 +��αβ + λαβ +�

�λβ2 −���λα2 +��αβ +��β
2 +���λα2 + λαβ −��λβ

2 =��α
2 +��

�2αβ +��β
2

=⇒ 2λαβ = 0

You could use different colours to show which bits cancel out.

If λ 6= 0 this can only be solved if one of α and β is zero. Since α > 0 and β > 0 there
are no non-zero values of λ for which Var (X) + Var (Y ) = Var (X + Y ).

We know that α > 0 as it is equal to 1+ an infinite number of positive terms, and
we know β > 0 as it is equal to λ× (1 + an infinite number of positive terms), and so
can only be equal to 0 when λ = 0. Note that since λ is the parameter in the Poisson
distribution of U we must have λ > 0.
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Let t = tan

(
x
2

)
. Then: dt

dx
=

1

2
sec2

x

2

=
1

2

(
1 + tan2 x

2

)
=

1

2

(
1 + t2

)
as required. Using the double-angle formula, sinx = 2 sin x

2 cos x2 which can be written as
2 tan x

2 cos2 x2 .

Then using cos2 θ = 1
sec2 θ

and sec2 θ = 1+tan2 θ gives sinx = 2×t× 1
1+t2

= 2t
1+t2

as required.∫ π
2

0

1

1 + a sinx
dx =

∫ x=π
2

x=0

1

1 + 2at
1+t2

dx

dt
dt

=

∫ x=π
2

x=0

���1 + t2

1 + t2 + 2at

2

���1 + t2
dt

= 2

∫ t=1

t=0

1

t2 + 2at+ 1
dt

= 2

∫ 1

0

1

(t+ a)2 + (1− a2)
dt

In the “list of required formulae” we have

∫
1

1 + x2
dx = tan−1 x + c. You are expected to

be able to quote this, or derive this quickly and also derive or write down similar results:6

Using

∫
1

a2 + x2
dx =

1

a
tan−1

(x
a

)
+ c gives:

2

[
1√

1− a2
arctan

t+ a√
1− a2

]1
0

which is
2√

1− a2

[
arctan

a+ 1√
1− a2

− arctan
a√

1− a2

]

6This question was written when there was a formula book accompanying the papers. The formula book included
the formula for

∫
1

a2+x2
dx. If this question was set now then you might have been given this integral in the question,

especially as there is quite a lot of integration to do already.
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We can simplify the difference between the two arctans using the formula for the difference
between two tans:7

2√
1− a2

arctan

(
tan

[
arctan

a+ 1√
1− a2

− arctan
a√

1− a2

])
=

2√
1− a2

arctan

( a+1√
1−a2 −

a√
1−a2

1 + a+1√
1−a2 ×

a√
1−a2

)

=
2√

1− a2
arctan

(√
1− a2

(
(�a+ 1)− �a

)
(1− a2) + a(a+ 1)

)

=
2√

1− a2
arctan

(√
1− a2
1 + a

)

=
2√

1− a2
arctan

(√
1− a√
1 + a

)
Let

In =

∫ π
2

0

sinn x

2 + sinx
dx

Then

In+1 + 2In =

∫ π
2

0

sinn+1 x+ 2 sinn x

2 + sinx
dx

=

∫ π
2

0
sinn x

(
sinx+ 2

2 + sinx

)
dx

=

∫ π
2

0
sinn x dx

Thus

In+1 =

∫ π
2

0
sinn x dx− 2In

Repeated application of this gives

I3 =

∫ π
2

0
sin2 x dx− 2I2

=

∫ π
2

0
sin2 x dx− 2

∫ π
2

0
sinx dx+ 4I1

=

∫ π
2

0
sin2 x dx− 2

∫ π
2

0
sinx dx+ 4

∫ π
2

0
sin0 x dx− 8I0

=

∫ π
2

0

[
1
2 (1− cos 2x)− 2 sinx+ 4

]
dx− 8I0

=
[
9
2x−

1
4 sin 2x+ 2 cosx

]π
2
0
− 8I0

= 9
4π − 2− 8I0

7See Q9 for more detail on using arctan (tanx) and tan (arctanx), these are not both necessarily equal to x.
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I0 can be evaluated using the earlier result:

I0 =

∫ π
2

0

1

2 + sinx
dx

= 1
2

∫ π
2

0

1

1 + 1
2 sinx

dx

= 1
2 ×

2√
1− 1

4

arctan

√
1− 1

2√
1 + 1

2

=
2√
3

arctan
1√
3

=
2√
3
× π

6
=

√
3π

9

giving a final answer of: (
9

4
− 8
√

3

9

)
π − 2

.
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To show the “stem”8. result, use the product rule and implicit differentiation to get:

dz

dx
= nyn−1

dy

dx
×
(

dy

dx

)2

+ yn × 2

(
dy

dx

)
d2y

dx2

= yn−1 × dy

dx
×

(
n

(
dy

dx

)2

+ 2y
d2y

dx2

)

(i) Comparing the equation to the “stem” result, n = 1 might be a good thing to consider.
Taking n = 1 we have:

z = y

(
dy

dx

)2

(∗)

dz

dx
=

dy

dx

((
dy

dx

)2

+ 2y
d2y

dx2

)

Multiplying the equation given in the question throughout by
dy

dx
gives:

dy

dx

((
dy

dx

)2

+ 2y
d2y

dx2

)
=
√
y

dy

dx

dz

dx
=
√
y

dy

dx
dz

dx
=
√
z using (∗)

Separating the variables gives: ∫
z−

1
2 dz =

∫
1 dx

2z
1
2 = x+ c

2y
1
2

dy

dx
= x+ c

Using the initial conditions y = 1 and dy
dx = 0 when x = 0 gives c = 0. Integrating

again gives: ∫
2y

1
2 dy =

∫
x dx

4
3y

3
2 = 1

2x
2 + k

8The “stem” of a question is a bit that appears before parts (i), (ii) etc. Any results given (or proved) in the
stem can be used in any or all of the following parts.
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Using the initial conditions gives k = 4
3 and so:

4
3y

3
2 = 1

2x
2 + 4

3

y
3
2 = 3

8x
2 + 1

y =
(
3
8x

2 + 1
)2
3 as required

(ii) Here there seems to be a similarity to the stem result, but it is less obvious. Perhaps

it would help to have a 2y next to the
d2y

dx2
. Multiplying by −2 gives:

−2

(
dy

dx

)2

+ 2y
d2y

dx2
− 2y2 = 0

−2

(
dy

dx

)2

+ 2y
d2y

dx2
= 2y2 (†)

The left hand side now looks like the stem result, with n = −2. This gives:

z = y−2
(

dy

dx

)2

dz

dx
= y−3

dy

dx

(
−2

(
dy

dx

)2

+ 2y
d2y

dx2

)

Multiplying (†) by y−3
dy

dx
gives:

dz

dx
= 2y2 × y−3 dy

dx
dz

dx
= 2y−1

dy

dx
dz

dx
= 2z

1
2

Integration (as before) gives 2z
1
2 = 2x+ c i.e.:

2y−1
dy

dx
= 2x+ c

and the initial conditions give us c = 0.

Separating variables again gives: ∫
1

y
dy =

∫
x dx

ln y = 1
2x

2 + k

The initial conditions (x = 0, y = 1) gives k = 0 and so y = e

(
1
2x

2
)
.
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Setting y = x into the given identity gives:

f(x) + f(x) ≡ f(x+ x) =⇒ 2f(x) ≡ f(2x)

and then setting x = 0 into 2f(x) ≡ f(2x) gives:

2f(0) = f(0) =⇒ f(0) = 0 .

The “equivalent to” sign ≡ can be used if a relationship is true for any value(s) - e.g. we can
write 2(x+ 3) ≡ 2x+ 6 as both sides are equal no matter what value x takes. An equation
sign is used when the relationship is true for only some values e.g. x2 = 2x.

The Maclaurin series gives us:

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + · · ·

We have already shown that f(0) = 0. Differentiating both sides of 2f(x) ≡ f(2x) gives:

2f ′(x) ≡ 2f ′(2x) using the chain rule

Substituting x = 0 into this gives 2f ′(0) = 2f ′(0) and so f ′(0) can be any constant, k.

Differentiating 2f ′(x) ≡ 2f ′(2x) gives 2f ′′(x) ≡ 4f ′′(2x) and so f ′′(0) = 0. Similarly all higher
derivatives evaluated at x = 0 will be equal to 0. Hence we have:

f(x) = kx

(i) Starting with g(x)g(y) ≡ g(x+ y) we have:

g(x)g(y) ≡ g(x+ y)

=⇒ ln
(
g(x)

)
+ ln

(
g(y)

)
= ln

(
g(x+ y)

)
G(x) + G(y) = G(x+ y)

Therefore we have G(x) = kx and so ln
(
g(x)

)
= kx =⇒ g(x) = ekx.

(ii) Let x = eu and y = ev. Then we have:

h(x) + h(y) = h(xy)

=⇒ h (eu) + h (ev) = h
(

e(u+v)
)

=⇒ H(u) + H(v) = H(u+ v)

Therefore we have H(u) = ku and so h(eu) = ku. Since x = eu we have h(x) = k lnx.

(iii) In this part we are not told which function to use. However looking at the given

z =
x+ y

1− xy
this looks very similar to tan(A+B).
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Let t(tanu) = T(u)9 and let x = tanu and y = tan v. We can restrict u and v to lie
in the range −π

2 < u, v < π
2 so that the relationship between x and u (and y and v) is

well-defined (i.e. there is only one value of u for each value of x etc.). Then:

t(x) + t(y) = t(z)

t(x) + t(y) = t

(
x+ y

1− xy

)
t(tanu) + t(tan v) = t

(
tanu+ tan v

1− tanu tan v

)
t(tanu) + t(tan v) = t

(
tan(u+ v)

)
T(u) + T(v) = T(u+ v)

Therefore we have T(u) = ku and so t(x) = k arctanx.

Note that the restriction that −π
2 < u < π

2 means that u = arctanx. For more on this
see question 9.

9The first thing I tried was t(x) = T(tanx) - but this didn’t help!
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Start by drawing a diagram:

Then using
−−→
OP =

−−→
OB +

−−→
BP gives: p = b + λ(a− b) = λa + (1− λ)b.

If OP bisects ∠AOB then the angle between OB and OP is equal the angle between OP
and angle OA. Using p · q = |p||q| cos θ and equating for cos θ gives:

b · p
|b||p|

=
p · a
|p||a|

a(b · p) = b(p · a)

a
(
b · (λa + (1− λ)b)

)
= b
(
(λa + (1− λ)b) · a

)
a(λb · a + (1− λ)b · b) = b(λa · a + (1− λ)b · a)

b · a (λa+ b(λ− 1)) = ab2(λ− 1) + λba2

b · a (λa+ b(λ− 1)) = ab (b(λ− 1) + aλ)

(b · a− ab) (λa+ b(λ− 1)) = 0

So either we have a · b = ab, which is only true if the angle between them is 0 or π, or if
λa+ b(λ− 1) = 0.

Since we are told that A, B and O are not collinear then a · b 6= ab. Hence we must have

λa+ b(λ− 1) = 0 and so λ =
b

a+ b
.

When I first tried this question I tried to use the Cosine rule. It got messy and I went wrong
somewhere!

We have already shown that
−−→
OP = λa + (1− λ)b. By using

−−→
OQ =

−→
OA+

−→
AQ =

−→
OA+ λ

−−→
AB

gives
−−→
OQ = λb + (1− λ)a10.

10You can use different ways of finding
−−→
OQ, such as

−−→
OQ =

−−→
OB+

−−→
BQ. They should all result in the same expression

for
−−→
OQ.
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We then have:

OQ2 −OP 2 = (λb + (1− λ)a)2 − (λa + (1− λ)b)2

= λ2b2 + (1− λ)2a2 +((((
(((2λ(1− λ)b · a− λ2a2 − (1− λ)2b2 −(((((

((2λ(1− λ)b · a

=��
�

λ2b2 + a2 − 2λa2 +��
�

λ2a2 −���λ2a2 − b2 + 2λb2 −���λ2b2

= a2 − b2 + 2λ(b2 − a2)
= (a2 − b2)(1− 2λ)

= (a2 − b2)
(

1− 2b

a+ b

)
= (a2 − b2)

(
a+ b− 2b

a+ b

)
= (a+ b)(a− b)×

(
a− b
a+ b

)
= (a− b)2
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(i) The Laplace transform of e−btf(t) is given by:∫ ∞
0

e−st × e−btf(t) dt =

∫ ∞
0

e−(s+b)tf(t) dt

= F(s+ b)

(ii) For this part, use the substitution u = at∫ ∞
0

e−stf(at) dt =

∫ ∞
0

e−s×
u
a f(u)× 1

a du

=
1

a

∫ ∞
0

e−
s
auf(u) du

=
1

a
F
(s
a

)

(iii) ∫ ∞
0

e−stf ′(t) dt =
[
e−stf(t)

]∞
0

+ s

∫ ∞
0

e−stf(t) dt

= −f(0) + sF(s)

(iv) Let I =

∫ ∞
0

e−st sin t dt. Then:

I =
[
−e−st cos t

]∞
0
− s

∫ ∞
0

e−st cos t dt

I = 1− s

([
e−st sin t

]∞
0

+ s

∫ ∞
0

e−st sin t dt

)
I = 1− s(0 + sI)

I = 1− s2I
(1 + s2)I = 1

I =
1

1 + s2

For the last part, we must stick to the previous results shown in the question. We want to
find

∫∞
0 e−st × e−pt cos qtdt. Start with the result from part (iv), i.e. the Laplace transform

of f(t) = sin t is
1

s2 + 1
.

• Part (iii) “f ′(t)→ sF(s)− f(0)” gives us that the Laplace transform of f ′(t) = cos t is

sF(s)− f(0) =
s

s2 + 1
− 0

• Part (ii) “f(at)→ a−1F
(
s
a

)
” gives us that the Laplace transform of cos(qt) is

1

q
×

s
q(

s
q

)2
+ 1

=
s

s2 + q2
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• Part (i) “e−btf(t)→ F(s+ b)” gives us that the Laplace transform of e−pt cos(qt) is

(s+ p)

(s+ p)2 + q2

Laplace transforms are useful tools in solving differential equations. You can read more
about them in this Wikipedia article.
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eiβ − eiα = (cosβ − cosα) + i(sinβ − sinα)

=⇒ |eiβ − eiα|2 = (cosβ − cosα)2 + (sinβ − sinα)2

= cos2 β + cos2 α− 2 cosβ cosα+ sin2 β + sin2 α− 2 sinβ sinα

= 2− 2(cosα cosβ + sinα sinβ)

= 2(1− cos(β − α))

= 4 sin2 1
2(β − α)

=⇒ |eiβ − eiα| = 2 sin 1
2(β − α)

The penultimate step here uses cos 2A = 1 − 2 sin2A. Note that since we want a positive
value for |eiβ − eiα| we take the positive square root. Since 0 < α < β < 2π we have
0 < 1

2(β − α) < π and so sin 1
2(β − α) is positive.

The first time I did this I ended up with |eiβ − eiα|2 = 4 sin2 1
2(α − β) which means that I

would have had to take the negative square root |eiβ − eiα| = −2 sin 1
2(α− β) to end up with

a positive value for the modulus.

For the next part, start with the LHS.

|eiα − eiβ||eiγ − eiδ|+ |eiβ − eiγ ||eiα − eiδ|
=|eiβ − eiα||eiδ − eiγ |+ |eiγ − eiβ||eiδ − eiα|11

=2 sin 1
2(β − α)× 2 sin 1

2(δ − γ) + 2 sin 1
2(γ − β)× 2 sin 1

2(δ − α)

=4
[ (

sin 1
2β cos 1

2α− sin 1
2α cos 1

2β
) (

sin 1
2δ cos 1

2γ − sin 1
2γ cos 1

2δ
)

+
(
sin 1

2γ cos 1
2β − sin 1

2β cos 1
2γ
) (

sin 1
2δ cos 1

2α− sin 1
2α cos 1

2δ
) ]

=4
[
((((

(((
(((

sin 1
2β cos 1

2α sin 1
2δ cos 1

2γ − sin 1
2α cos 1

2β sin 1
2δ cos 1

2γ

− sin 1
2β cos 1

2α sin 1
2γ cos 1

2δ +
((((

(((
((((

((
sin 1

2α cos 1
2β sin 1

2γ cos 1
2δ

+ sin 1
2γ cos 1

2β sin 1
2δ cos 1

2α−(((((
((((

((((
sin 1

2β cos 1
2γ sin 1

2δ cos 1
2α

−
((((

(((
((((

((
sin 1

2γ cos 1
2β sin 1

2α cos 1
2δ + sin 1

2β cos 1
2γ sin 1

2α cos 1
2δ
]

=4
[

sin 1
2γ cos 1

2β sin 1
2δ cos 1

2α− sin 1
2β cos 1

2α sin 1
2γ cos 1

2δ

+ sin 1
2β cos 1

2γ sin 1
2α cos 1

2δ − sin 1
2α cos 1

2β sin 1
2δ cos 1

2γ
]

=4
[

sin 1
2γ cos 1

2α
(
sin 1

2δ cos 1
2β − sin 1

2β cos 1
2δ
)

− sin 1
2α cos 1

2γ
(
sin 1

2δ cos 1
2β − sin 1

2β cos 1
2δ
) ]

=4
(
sin 1

2γ cos 1
2α− sin 1

2α cos 1
2γ
) (

sin 1
2δ cos 1

2β − sin 1
2β cos 1

2δ
)

=2 sin 1
2(γ − α)× 2 sin 1

2(δ − β)

=|eiγ − eiα||eiδ − eiβ|
=|eiα − eiγ ||eiβ − eiδ|

11The first step here was to rewrite the different components so that we could use the first result used (which
needed α < β). Note that | − a| = |a|.
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For the very last part note that a general point on the unit circle can be written as eiα where
α is the angle anticlockwise from the positive real axis.

The expression |eiα − eiβ| measures the distance between two points on the unit circle, one
with angle α and one with angle β.

The diagram below shows a unit circle with 4 points A,B,C,D which are the points repre-
sented by complex numbers eiα, eiβ, eiγ , eiδ. Then length AB = |eiα − eiβ| etc.

The result that we have shown is:

|eiα − eiβ||eiγ − eiδ|+ |eiβ − eiγ ||eiα − eiδ| = |eiα − eiγ ||eiβ − eiδ|

which means that:
AB × CD +BC ×AD = AC ×BD

This means that the products of the lengths of the diagonals is equal to the sum of the
products of the two pairs of opposite sides.

We have shown this to be true in the unit circle, and since all circles are similar this is true
for any cyclic quadrilateral. Alternatively you can write the vertices on a general circle with
centre the origin as reiθ, and then all the r’s would cancel out.

This theorem is also known as Ptolemy’s Theorem. You were not expected to be familiar
with this theorem!
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(i) Nothing “high tech” needed here. The first five Fibonacci numbers are F0 = 0, F1 = 1,
F2 = 1, F3 = 2, F4 = 3 and F5 = 5.

Then we have:
F0F3 − F1F2 = 0× 2− 1× 1 = −1

F2F5 − F3F4 = 1× 5− 2× 3 = −1

which are the same, so F0F3 − F1F2 = F2F5 − F3F4.

(ii) To start with, it looks like one of the values is −1. Consider the case “between” the
two in part (i) and we have F1F4 −F2F3 = 1× 3− 1× 2 = 1. We can then conjecture
that:

FnFn+3 − Fn+1Fn+2 = (−1)n+1

i.e. it is equal to 1 when n is odd and −1 when n is even. We now need to prove this.

If we can show that Fn+2Fn+5−Fn+3Fn+4 = FnFn+3−Fn+1Fn+2, then we can use an
induction argument to prove our conjecture.

Fn+2Fn+5 − Fn+3Fn+4 = (Fn + Fn+1) (Fn+3 + Fn+4)− (Fn+1 + Fn+2) (Fn+2 + Fn+3)

= FnFn+3 +���
��Fn+1Fn+3 + FnFn+4 + Fn+1Fn+4

− Fn+1Fn+2 − Fn+2Fn+2 −���
��Fn+1Fn+3 − Fn+2Fn+3

= FnFn+3 − Fn+1Fn+2 + Fn+4 (Fn + Fn+1)− Fn+2 (Fn+2 + Fn+3)

= FnFn+3 − Fn+1Fn+2 +���
��Fn+4Fn+2 −���

��Fn+2Fn+4

= FnFn+3 − Fn+1Fn+2

What you cannot see here is the crossings out and wrong turns I made before getting
this to work. Please don’t expect to get the answer out first time!

Hence we have FnFn+3 − Fn+1Fn+2 = Fn+2Fn+5 − Fn+3Fn+4. This means that we
have F0F3 − F1F2 = F2F5 − F3F4 = F4F7 − F5F6 = . . . = −1 and F1F4 − F2F3 =
F3F6 − F4F5 = F5F8 − F6F7 = . . . = 1 and so:

FnFn+3 − Fn+1Fn+2 =

{
−1 if n is even

1 if n is odd
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(iii) Using the identity for tan(A+B) we have:

tan
(

arctan
(

1
F2r+1

)
+ arctan

(
1

F2r+2

))
=

tan
[
arctan

(
1

F2r+1

)]
+ tan

[
arctan

(
1

F2r+2

)]
1− tan

[
arctan

(
1

F2r+1

)]
tan

[
arctan

(
1

F2r+2

)]
=

1
F2r+1

+ 1
F2r+2

1− 1
F2r+1

1
F2r+2

=
F2r+2 + F2r+1

F2r+1F2r+2 − 1

The numerator of this is equal to F2r+3. For the denominator, we know that F2rF2r+3−
F2r+1F2r+2 = −1 (since 2r is even) and so F2r+1F2r+2 − 1 = F2rF2r+3. We now have:

tan
(

arctan
(

1
F2r+1

)
+ arctan

(
1

F2r+2

))
=

F2r+3

F2rF2r+3

=
1

F2r

= tan
(

arctan
(

1
F2r

))

A little care is needed now, since tanA = tanB does not necessarily imply that

A = B! Each of the “arctans” has a value between 0 and π
2 , and so arctan

(
1

F2r+1

)
+

arctan
(

1
F2r+2

)
has a value between 0 and π. Between these values tanx is a “one-to-

one” function, and so in this case tanA = tanB does imply that A = B and hence
we can conclude:

arctan
(

1
F2r+1

)
+ arctan

(
1

F2r+2

)
= arctan

(
1
F2r

)
For the final part, we have:

∞∑
r=1

arctan

(
1

F2r+1

)
=
∞∑
r=1

[
arctan

(
1

F2r

)
− arctan

(
1

F2r+2

)]
= arctan

(
1

F2

)
+ arctan

(
1

F4

)
+ arctan

(
1

F6

)
+ . . .

− arctan

(
1

F4

)
− arctan

(
1

F6

)
− . . .

= arctan

(
1

F2

)
= arctan (1)

= 1
4π

It is true that tan (arctanx) = x, but not necessarily true that arctan (tanx) = x. Try
evaluating these for some values of x (calculators allowed, but start without a calculator
using x = 1 and x =

√
3 for the first expression and x = 1

4π and x = 3
4π for the second). Try

sketching some graphs to see what is happening. What about sin (arcsinx) and arcsin (sinx)?
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First thing to note is that the string is “light” (which means we do not have to worry about
the effect of gravity on the string) and “in-extensible” (so the two particles move with the
same acceleration and the tension is the same throughout the string). The block is “smooth”
so we do not need to worry about friction. Since m < M when the particles are released Q
moves downwards.

The next step is to draw a clear diagram showing the forces acting on the particles. Be very
careful to ensure that “m” and “M” are easily distinguishable!12

Using “F = ma” radially for P gives us:

mv2

a
= mg sin θ −R (*)

When P has moved through an angle of θ, it has moved an arc length of aθ round the
quadrant. Hence Q will have moved down by aθ. Conservation of energy gives us:

1
2mv

2 + 1
2Mv2 +mg(a sin θ)−Mg(aθ) = 0

i.e. 1
2

(
v2

a

)
(m+M) = g(Mθ −m sin θ)

The question wants us to find an expression for R in terms of m,M, θ and g, so we want
to eliminate v2 and a. Equation (∗) gives us v2

a = g sin θ − 1
mR, and substituting into the

conservation of energy equation gives:

1
2

(
g sin θ − 1

m
R

)
(m+M) = g(Mθ −m sin θ)

12Some people use the substitution m = m1, M = m2 to help ensure that they do not get confused in the middle
of their working. This is fine as long as you make it clear that this is what you are doing!
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Rearranging gives:(
g sin θ − 1

m
R

)
=

2g(Mθ −m sin θ)

(m+M)

=⇒ R = mg sin θ − 2mg(Mθ −m sin θ)

(m+M)

=
m2g sin θ +mMg sin θ − 2mMgθ + 2m2g sin θ

(m+M)

=
mg
[
(3m+M) sin θ − 2Mθ

]
m+M

For P to remain in contact with the block, we need R > 0 for all 0 6 θ 6 1
2π. Hence we need

(3m + M) sin θ − 2Mθ > 0 in this range. Equivalently we can write this as sin θ > 2M
3m+M θ

for 0 6 θ 6 1
2π. Let λ = 2M

3m+M .

Below is a sketch of y = sin θ and y = λθ for some values of λ.

From this we can see that as long as sin θ > λθ when θ = 1
2π then sin θ > λθ throughout the

range 0 6 θ 6 1
2π. Hence we need 1 > λ× 1

2π and so λ 6 2
π .

We therefore need:

2M

3m+M
6

2

π

2πM 6 6m+ 2M

2M(π − 1) 6 6m

2(π − 1)

6
6
m

M

and hence we have
m

M
>
π − 1

3
as required.

See STEP solutions from MEI (http://mei.org.uk/step-aea-solutions) for a slightly different
solution to this question (which doesn’t use conservation of momentum).
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There are 2n string ends altogether initially. Start by thinking what happens with the first
two string ends selected. If I pick one string end then the probability that I will pick the

other end of that string and hence make a loop/ring is
1

2n− 1
and the probability that I will

pick an end from a different string and hence make a longer string is
2n− 2

2n− 1
.

Then, on the next step of the process I now have 2n − 2 ends to consider (as regardless
of whether I made a ring or a longer string last time I only have 2n − 2 ”free ends”). If I
select one end at random and consider the 2n − 3 other ends the probability I make a ring

is
1

2n− 3
and the probability that I make a longer string is

2n− 4

2n− 3
. The process will be

repeated exactly n times.

At each stage, the number of rings made is independent of the number of rings made pre-
viously (this is important for the variance as it means that we can use Var(X + Y ) =
Var(X) + Var(Y )).

On the first step the expected number of rings made is:

0× 2n− 2

2n− 1
+ 1× 1

2n− 1
=

1

2n− 1
.

Similarly, on the second step of the process the expected number of rings made is
1

2n− 3
,

on the third step the expected number of rings made is
1

2n− 5
etc. Therefore the expected

number of rings made by the end of the process is:

1

2n− 1
+

1

2n− 3
+

1

2n− 5
+ · · ·+ 1

3
+ 1

The variance of the number of rings made on the first step of the process is:

02 × 2n− 2

2n− 1
+ 12 × 1

2n− 1
−
(

1

2n− 1

)2

The variance of the number of rings made by the end of the process is:[
1

2n− 1
− 1

(2n− 1)2

]
+

[
1

2n− 3
− 1

(2n− 3)2

]
+

[
1

2n− 5
− 1

(2n− 5)2

]
+ · · ·+

[
1

1
− 1

12

]
=

2(n− 1)

(2n− 1)2
+

2(n− 2)

(2n− 3)2
+

2(n− 3)

(2n− 5)2
+ · · ·+ 2

32
+ 0

When n = 40000 the expectation is:

1

79999
+

1

79997
+ · · ·+ 1

5
+

1

3
+

1

1

=1 +
1

3
+

1

5
+ · · ·+ 1

79997
+

1

79999
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We are told that 1 + 1
2 + · · ·+ 1

n ≈ lnn. We can write the expectation as:

1 +
1

3
+

1

5
+ · · ·+ 1

79997
+

1

79999

=

[
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

79998
+

1

79999
+

1

80000

]
−
[

1

2
+

1

4
+

1

6
+ · · ·+ 1

79998
+

1

80000

]
=

[
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

79998
+

1

79999
+

1

80000

]
− 1

2

[
1 +

1

2
+

1

3
+ + · · ·+ 1

39999
+

1

40000

]
≈ ln(80000)− 1

2 ln(40000)

The other bit of information we were given is that ln 20 ≈ 3, so now try to use this in the
approximation for the expectation.

ln(80000)− 1
2 ln(40000) = ln(80000)− ln

√
40000

= ln(80000)− ln(200)

= ln
(
80000
200

)
= ln 400

= 2 ln 20

≈ 6

Hence the expected number of rings is approximately 6 (which, to me at least, is a surprisingly
low number!).

The first time I did this questions I left out the 1
80000 terms, which did not work out well.
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