STEP Support Programme

Assignment 11

Warm-up

1
(i) A function, T , is defined for positive integers k by

$$
\mathrm{T}(k+1)=\mathrm{T}(k)+k+1 \quad \text { and } \quad \mathrm{T}(1)=1 .
$$

$T(2)=T(1)+1+1$ etc.
Find (by calculating the values) the smallest value of n such that $T(n)>100$.
(ii) The function f is defined for $0 \leqslant x \leqslant 2$ by

$$
\mathrm{f}(x)=\left\{\begin{array}{lll}
x & \text { for } & 0 \leqslant x \leqslant 1 \\
(2-x)^{2} & \text { for } & 1<x \leqslant 2
\end{array}\right.
$$

Sketch the graph of $\mathrm{f}(x)$ for $0 \leqslant x \leqslant 2$.
You are also given that $\mathrm{f}(x+2)=\mathrm{f}(x)$ for all x. Use this to find the values of $\mathrm{f}(2.5)$, $f(3), f(3.5)$ and $f(4)$.

Sketch the graph of $\mathrm{f}(x)$ for $-2 \leqslant x \leqslant 6$.

Preparation

2 (i) By using the substitution $y=2^{x}$, find the (real) value of x that satisfies the equation

$$
4^{x}-7 \times 2^{x}-8=0
$$

Note that the question says "value" and not "values", so you should expect just one solution.
(ii) Find the value of x that satisfies the equation

$$
\sqrt{3 x-5}-\sqrt{x+6}=1
$$

Remember that the notation \sqrt{x} denotes the positive root of x, so $\sqrt{x} \geqslant 0$.

Discussion

It is a good idea to check your answers in the original equation, especially if you have been squaring things as this can introduce "extra" solutions. For example, the equation $x+1=3$ has just one solution $(x=2)$, but if your first step had (rather bizarrely) been to square both sides to get $(x+1)^{2}=9$ you would find two solutions $(x=2$ and $x=-4)$. Only one of these is a solution of the original equation.

The STEP question

3 (i) Use the substitution $\sqrt{x}=y$ (where $y \geqslant 0$) to find the real root of the equation

$$
x+3 \sqrt{x}-\frac{1}{2}=0 .
$$

(ii) Find all real roots of the following equations:
(a) $\quad x+10 \sqrt{x+2}-22=0$;
(b) $\quad x^{2}-4 x+\sqrt{2 x^{2}-8 x-3}-9=0$.

Discussion

Making a substitution for the thing in the square root worked rather well for part (i); it might be worth trying it for part (ii).

Warm down

(i) Given that

$$
2^{m+1}+2^{m}=3^{n+2}-3^{n}
$$

and that m and n are integers, find the values of m and n.
You could start by substituting some values of m and n to see what happens. If you chance upon a pair of values that work by doing this you should show that this is the only solution.
(ii) Find the values of x that satisfy the equation

$$
3^{2 x}-34 \times 15^{x-1}+5^{2 x}=0 .
$$

This one is a little trickier. One thing that might help is using two substitutions, one for 3^{x} and one for 5^{x}.

