STEP Support Programme

STEP 3 Algebra Questions

$1 \quad 2008$ S3 Q5

The functions $\mathrm{T}_{n}(x)$, for $n=0,1,2, \ldots$, satisfy the recurrence relation

$$
\begin{equation*}
\mathrm{T}_{n+1}(x)-2 x \mathrm{~T}_{n}(x)+\mathrm{T}_{n-1}(x)=0 \quad(n \geqslant 1) \tag{*}
\end{equation*}
$$

Show by induction that

$$
\left(\mathrm{T}_{n}(x)\right)^{2}-\mathrm{T}_{n-1}(x) \mathrm{T}_{n+1}(x)=\mathrm{f}(x)
$$

where $\mathrm{f}(x)=\left(\mathrm{T}_{1}(x)\right)^{2}-\mathrm{T}_{0}(x) \mathrm{T}_{2}(x)$.
In the case $\mathrm{f}(x) \equiv 0$, determine (with proof) an expression for $\mathrm{T}_{n}(x)$ in terms of $\mathrm{T}_{0}(x)$ (assumed to be non-zero) and $\mathrm{r}(x)$, where $\mathrm{r}(x)=\mathrm{T}_{1}(x) / \mathrm{T}_{0}(x)$. Find the two possible expressions for $\mathrm{r}(x)$ in terms of x.

$2 \quad 2003$ S3 Q6

Show that

$$
2 \sin \frac{1}{2} \theta \cos r \theta=\sin \left(r+\frac{1}{2}\right) \theta-\sin \left(r-\frac{1}{2}\right) \theta
$$

Hence, or otherwise, find all solutions of the equation

$$
\cos a \theta+\cos (a+1) \theta+\cdots+\cos (b-2) \theta+\cos (b-1) \theta=0
$$

where a and b are positive integers with $a<b-1$.
$3 \quad 2012$ S3 Q2
In this question, $|x|<1$ and you may ignore issues of convergence.
(i) Simplify

$$
(1-x)(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \cdots\left(1+x^{2^{n}}\right)
$$

where n is a positive integer, and deduce that

$$
\frac{1}{1-x}=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \cdots\left(1+x^{2^{n}}\right)+\frac{x^{2^{n+1}}}{1-x}
$$

Deduce further that

$$
\ln (1-x)=-\sum_{r=0}^{\infty} \ln \left(1+x^{2^{r}}\right)
$$

and hence that

$$
\frac{1}{1-x}=\frac{1}{1+x}+\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\cdots
$$

(ii) Show that

$$
\frac{1+2 x}{1+x+x^{2}}=\frac{1-2 x}{1-x+x^{2}}+\frac{2 x-4 x^{3}}{1-x^{2}+x^{4}}+\frac{4 x^{3}-8 x^{7}}{1-x^{4}+x^{8}}+\cdots
$$

2010 S3 Q4

(i) The number α is a common root of the equations $x^{2}+a x+b=0$ and $x^{2}+c x+d=0$ (that is, α satisfies both equations). Given that $a \neq c$, show that

$$
\alpha=-\frac{b-d}{a-c} .
$$

Hence, or otherwise, show that the equations have at least one common root if and only if

$$
(b-d)^{2}-a(b-d)(a-c)+b(a-c)^{2}=0
$$

Does this result still hold if the condition $a \neq c$ is not imposed?
(ii) Show that the equations $x^{2}+a x+b=0$ and $x^{3}+(a+1) x^{2}+q x+r=0$ have at least one common root if and only if

$$
(b-r)^{2}-a(b-r)(a+b-q)+b(a+b-q)^{2}=0
$$

Hence, or otherwise, find the values of b for which the equations $2 x^{2}+5 x+2 b=0$ and $2 x^{3}+7 x^{2}+5 x+1=0$ have at least one common root.

