These are not fully worked solutions — you need to fill in the gaps. It is a good idea to look at the
“Hints” document before this one.

1 For the first part, \(x = -1, 0, 1. \)

We need \(P'(x) - 2xP(x) \equiv k(x - a)(x + a)(x - b)(x + b), \) though we actually could have \(P'(x) - 2xP(x) \) having factors of \((x - a)^2\) etc., but we might as well use the simplest case!

This means that \(P(x) \) must be a quartic, so we can write \(P(x) = \alpha x^4 + \beta x^3 + \gamma x^2 + \delta x + \epsilon. \)

You can then use \(P'(x) - 2xP(x) \equiv x(x^2 - a^2)(x^2 - b^2) \) and equate coefficients to find the
values of the coefficients of \(P(x). \) Finding \(\alpha, \beta \) and \(\delta \) is fairly easy,
\(\gamma \) and \(\epsilon \) are a little harder.

\[
P(x) = -\frac{x^4}{2} + \left(\frac{a^2}{2} + \frac{b^2}{2} - 1 \right) x^2 + \left(\frac{a^2}{2} + \frac{b^2}{2} - \frac{a^2b^2}{2} - 1 \right).
\]

2 You should start by showing that

\[
I = \int_0^{\pi} x f(\sin x) \, dx = \int_0^{\pi} (\pi - t) f(\sin t) \, dt.
\]

You can then show that \(2I = \int_0^{\pi} (x + \pi - x) f(\sin x) \, dx. \)

You should expect to use this repeatedly in the rest of the question!

(i) If you use \(u = \cos x \) then you should find that the integral is equal to
\(\frac{1}{2} \pi \int_{-1}^{1} \frac{1}{4 - u^2} \, du. \)

Using partial fractions we have \(\frac{1}{4 - u^2} = \frac{A}{2 + u} + \frac{B}{2 - u} \) and then you can find \(A \) and \(B. \)

The final answer is \(\frac{1}{4} \pi \ln 3. \)

(ii) Split the integral into two parts, and then use a substitution of \(t = x - \pi, \) which will
give you:

\[
\int_0^{\pi} \frac{x \sin x}{3 + \sin^2 x} \, dx + \int_0^{\pi} \frac{(t + \pi) \sin(t + \pi)}{3 + \sin^2(t + \pi)} \, dt.
\]

You can then use the fact that \(\sin(t+\pi) = -\sin t \) to reduce the integrals to
\(-\pi \int_0^{\pi} \frac{\sin t}{3 + \sin^2 t} \)
and, by using your work from part (i) the answer is \(-\frac{1}{2} \pi \ln 3. \)

(iii) Using \(\sin 2x = 2 \sin x \cos x, \) the stem result and a substitution \(u = \cos x \) leads to the
integral \(\frac{1}{2} \pi \int_{-1}^{1} \frac{2|u|}{4 - u^2} \, du \) which is the same as
\(\pi \int_{0}^{1} \frac{2u}{4 - u^2} \, du. \)

The result \(\int \frac{f'(x)}{f(x)} = \ln |f(x)| + c \) may be useful. Final answer \(\pi \ln \frac{4}{3}. \)
3 (i) The first two answers should be \(\frac{1}{\sqrt{3 + x^2}} \) and \(\frac{2x^2 + 3}{\sqrt{3 + x^2}} \).

Then we can write
\[
\sqrt{3 + x^2} = \frac{1}{2} \left(\frac{3 + 2x^2}{\sqrt{3 + x^2}} + \frac{3}{\sqrt{3 + x^2}} \right)
\]
and hence use the previous two answers to find \(\int \sqrt{3 + x^2} \, dx \). Don’t forget the constant of integration!

Final answer: \(\frac{1}{2} x \sqrt{3 + x^2} + \frac{3}{2} \ln \left(x + \sqrt{3 + x^2} \right) + c. \)

(ii) We can treat this as a quadratic equation, which leads to two differential equations:
\[
\frac{dy}{dx} = -x \pm \frac{\sqrt{x^2 + 3}}{3}.
\]

Integrating and using the given initial condition then gives:
\[
y_1 = -\frac{1}{6} x^2 + \frac{1}{6} x \sqrt{3 + x^2} + \frac{1}{2} \ln \left(x + \sqrt{3 + x^2} \right) - \frac{1}{6} - \frac{1}{2} \ln 3
\]
and
\[
y_2 = -\frac{1}{6} x^2 - \frac{1}{6} x \sqrt{3 + x^2} - \frac{1}{2} \ln \left(x + \sqrt{3 + x^2} \right) + \frac{1}{2} + \frac{1}{2} \ln 3.
\]
4 (i) With the given substitution we have \(\frac{dy}{dx} = (1 + x^2)^{\frac{1}{2}} \times \frac{du}{dx} + xu (1 + x^2)^{-\frac{1}{2}}. \)

This should reduce the differential equation to one where the variables are separable. The integral in \(x \) can be tackled with a substitution, or by inspection (“guessing” what the answer is and then checking it). You should find that \(-\frac{1}{u} = \frac{1}{3} (1 + x^2)^{\frac{3}{2}} + c.\)

You do need to give the final answer in terms of \(y \), and use the initial condition. The final answer is:

\[
y = \frac{3 (1 + x^2)^{\frac{1}{2}}}{4 - (1 + x^2)^{\frac{3}{2}}}.
\]

(ii) This time use \(y = u(1 + x^3)^{\frac{1}{3}} \). The final answer is:

\[
y = \frac{4 (1 + x^3)^{\frac{1}{3}}}{5 - (1 + x^3)^{\frac{4}{3}}}.
\]

(iii) This part requires you to look at the cases \(n = 2 \) (part (i)) and \(n = 3 \) (part (iii)) and generalise in terms of \(n \). Final answer:

\[
y = \frac{(n + 1) (1 + x^n)^{\frac{1}{n}}}{(n + 2) - (1 + x^n)^{\frac{n+1}{n}}}.
\]

Note: in each case equivalent forms would be acceptable, but it is easier to find the general case if you simplify the \(n = 2 \) and \(n = 3 \) cases as shown.
If you substitute \(y = e^x \) into equation (\(* \)) you get:

\[
(x - 1) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = (x - 1)e^x - xe^x + e^x = 0
\]

and so \(y = e^x \) is a solution of (\(* \)).

When substituting \(y = ue^x \), remember that \(u \) is a function of \(x \) so we have

\[
\frac{dy}{dx} = ue^x + \frac{du}{dx}e^x
\]

and

\[
\frac{d^2y}{dx^2} = \left(ue^x + \frac{du}{dx}e^x \right) + \left(\frac{d^u}{dx}e^x + \frac{d^2u}{dx^2}e^x \right).
\]

You can now substitute these into (\(* \)), and you can divide throughout by \(e^x \) (this is OK as we have \(e^x \neq 0 \)). With some simplification you should obtain (\(** \)).

Setting \(\frac{du}{dx} = v \) gives the equation

\[
\frac{1}{v} \frac{dv}{dx} = -\frac{x - 2}{x - 1}.
\]

By using partial fractions\(^1\) we get

\[
\frac{x - 2}{x - 1} = 1 - \frac{1}{x - 1}.
\]

Integrating gives:

\[
\ln |v| = -x + \ln |x - 1| + c
\]

and so:

\[
v = ke^{-x}(x - 1) \quad \text{where} \quad k = e^c.
\]

We now have \(\frac{du}{dv} = ke^{-x}(x - 1) \) and so we have:

\[
u = \int ke^{-x}(x - 1)dx
\]

and you can use integration by parts to obtain

\[
u = -kxe^{-x} + c'.
\]

The final instruction is a “Hence”, so you need to use the previous results. In particular setting \(y = Ax + Be^x \) and showing that this satisfies (\(* \)) will not gain you any credit. Since \(y = ue^x \) we have \(y = -kx + c'e^x \) and so if we let \(A = -k \) and \(B = c' \) we know that \(y = Ax + Be^x \) satisfies (\(* \)).

\(^1\) Or we can note that \(\frac{x - 2}{x - 1} = \frac{x - 1 - 1}{x - 1} \).