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STEP Support Programme

STEP 3 Complex Numbers: Solutions

1 A primitive nth root of unity is one that will “generate” all the other roots. This means that
a is a primitive root of unity iff1 a, a2, a3, ..., an = 1 are all different and are the n roots of
unity.2

The 4th roots of unity are 1,−1, i,−i and the primitive 4th roots of unity are i and −i; note
that i2 = −1, i3 = −i, i4 = 1 and (−i)2 = −1, (−i)3 = i, (−i)4 = 1 so both i and −i “generate”
all the roots of x4 = 1 unlike −1 and 1.

Hence C4(x) = (x− i)(x+ i) = x2 − i2 = x2 + 1.

(i) � There is only one root of x1 = 1, and that is x = 1. Hence C1(x) = x− 1.

� There are two roots of x2 = 1, i.e. x = ±1. Hence C2(x) = x− (−1) = x+ 1.

� There are three roots of x3 = 1, which are 1, e
2πi
3 and e−

2πi
3 . The last two are both

primitive roots so:

C3(x) =
(
x− e

2πi
3

)(
x− e−

2πi
3

)
= x2 −

(
e

2πi
3 + e−

2πi
3

)
x+ 1

= x2 − 2 cos
(
2π
3

)
x+ 1

= x2 + x+ 1

Alternatively you could have written the roots as −1
2 ±

√
3
2 i and used:

C3(x) =
(
x+ 1

2 +
√
3
2 i
)(

x+ 1
2 −

√
3
2 i
)

=
(
x+ 1

2

)2 − 3
4 i2

= x2 + x+ 1
4 + 3

4

� There are five roots of x5 = 1, which are 1, e±
2πi
5 , e±

4πi
5 . This means that

C5(x) =
(
x− e

2πi
5

)(
x− e−

2πi
5

)(
x− e

4πi
5

)(
x− e−

4πi
5

)
. I don’t fancy expanding

this, and I will probably have to find cos
(
2π
5

)
which I don’t know.3 For now I will

park this one.

� There are six roots of x6 = 1. Drawing a sketch will show that the only primitive

ones are x = e
2πi
6 and x = e−

2πi
6 . Following the same method as for C3(x) gives

C6(x) = x2−x+ 1, the only difference being that we use cos
(
2π
6

)
= 1

2 rather than
cos
(
2π
3

)
= −1

2 .

Coming back to C5(x). The 5th roots of unity all solve x5 − 1 = 0. We can write this
as (x− 1)(x4 + x3 + x2 + x+ 1) = 0. The only non-primitive root is x = 1 and this is
accountable for the x−1 factor. The other 4 (primitive) roots solve x4+x3+x2+x+1 =
0 and so C5(x) = x4 + x3 + x2 + x+ 1. The sort of method can be used for C3 and C6

(and others) as well.
1If and only if.
2If we have ap = aq where p 6= q and 0 < p < q 6 n then aq−p = 1 and hence a is not a primitive nth root of

unity.
3It can be calculated in various ways — try a web search.
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(ii) We know that n > 6. There are 6 primitive roots of x7 = 1, so n 6= 7. Consider x8 = 1

— there are 8 roots of which 4 are primitive, and these are at x = e±
πi
4 = 1√

2
± 1√

2
i

and x = e±
3πi
4 = − 1√

2
± 1√

2
i. This gives:

C8(x) =

(
x− 1√

2
− 1√

2
i

)(
x− 1√

2
+

1√
2

i

)(
x+

1√
2
− 1√

2
i

)(
x+

1√
2

+
1√
2

i

)
=

((
x− 1√

2

)2

− 1

2
i2

)((
x+

1√
2

)2

− 1

2
i2

)

=

(
x2 − 2√

2
x+

1

2
+

1

2

)(
x2 +

2√
2
x+

1

2
+

1

2

)
=
(
x2 −

√
2x+ 1

)(
x2 +

√
2x+ 1

)
=
(
x2 + 1

)2 − 2x2

= x4 + 2x2 + 1− 2x2

= x4 + 1

and so n = 8.

A different approach would be to start by noting that Cn(x) = 0 =⇒ x4 = −1 =⇒
x8 = 1 and so n must be a multiple of 8. You would still have to verify that C8(x) =
x4 + 1.

(iii) If p is prime, then the only non-primitive root of xp = 1 is x = 1. You could then

write Cp(x) as the product of p different brackets involving e
2kπ
p

i
, but as the question

asks for an unfactorised polynomial this is probably not the way to go. Comparing to
C5(x) we have:

xp − 1 = 0

(x− 1)
(
xp−1 + xp−2 + xp−3 + . . .+ x+ 1

)
= 0

and so Cp(x) = xp−1 + xp−2 + xp−3 + . . .+ x+ 1.

(iv) From part (i) the functions Ck(x) have the following roots:

� C1(x): root x = 1

� C2(x): root x = −1

� C3(x): roots x = e±
2π
3
i

� C4(x): roots x = ±i

� C5(x): roots x = e±
2π
5
i and x = e±

4π
5
i

� C6(x): roots x = e±
2π
6
i

and from this it appears that no root of Cm(x) is also a root of Cn(x) for any m 6= n.

WLOG4 let m < n. By the definition of Cn(x), if a is a root of Cn(x) then there can
be no integer m (where 0 < m < n) such that am = 1 and so if a is a root of Cn(x)
then a cannot be a root of Cm(x).

4Without Loss of Generality.
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Thus if we have Cq(x) ≡ Cr(x)Cs(x) and Cq(a) = 0 (i.e. x = a is a root of Cq(x) = 0)
then we must have either Cr(a) = 0 or Cs(a) = 0. This means that either a is a root
of Cr(x) or Cs(x) which means that we must have q = r and Cs(x) ≡ 1 or q = s and
Cr(x) ≡ 1. This is not possible for positive integers q, r and s as there will always be
a least one root of Ck(x) if k is a positive integer, hence Ck(x) 6≡ 1. Hence there are
no positive integers q, r and s such that Cq(x) ≡ Cr(x)Cs(x).
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2 Since P and Q lie on a circle radius a centre the origin we know that |p| = |q| = a and so
pp∗ = qq∗ = a2. We then have:

a2(p− q) = a2p− a2q
= qq∗p− pp∗q
= pq(q∗ − p∗)
= −pq(p∗ − q∗)

Hence pq = −a2 p− q
p∗ − q∗

as required.

You can also do the first part of the question by setting p = a(cosα + i sinα) and q =

a(cosβ + i sinβ), and then considering pq and
p− q
p∗ − q∗

. This will take a bit more effort.

If PQ and RQ are perpendicular then we can write p− q = ik(r − s) for some real k. Note
that multiplying by i has the affect of rotating anticlockwise by 1

2π. If k is negative then PQ
will be a rotation of 1

2π clockwise, and the magnitude of k will give the ratio of the lengths
PQ and RS. Hence we have:

p− q = ik(r − s) and p∗ − q∗ = −ik(r∗ − s∗)

and so:

pq = −a2 p− q
p∗ − q∗

= −a2 ik(r − s)
−ik(r∗ − s∗)

= a2
r − s
r∗ − s∗

= −rs

Therefore pq = −rs =⇒ pq + rs = 0.

Note that the points A1, A2, · · · , An are fixed, where as B1, B2, · · · , Bn are chosen.

When n = 3 we have B1B2 ⊥ A1A2, B2B3 ⊥ A2A3 and B3B1 ⊥ A3A1. Therefore we have
a1a2 + b1b2 = 0 etc. This gives:

b1b2 × b3b1 = a1a2 × a3a1

b21 =
a1a2 × a3a1

b2b3

b21 = −a1a2 × a3a1
a2a3

b21 = −a21
and so b1 = ±ia1.

Note that none of the numbers aj , bk can be equal to 0 as the points all lie on a circle radius
a (which we can assume to be greater than 0) and the circle is centred on the origin.

When n = 4 we have:

b1b2 = −a1a2
b2b3 = −a2a3
b3b4 = −a3a4
b4b1 = −a4a1
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Multiplying these 4 together gives:

b21 =
a21a

2
2a

2
3a

2
4

b22b
2
3b

2
4

At this point we can either use b2b3 = −a2a3 or b3b4 = −a3a4 to cancel some terms, but in
either case b1 is related to another b value and so the choice of b1 is not restricted despite
the A points being fixed. For example, if we use b2b3 = −a2a3 we have

b21 =
a21a

2
4

b24

and so the value of b1 will depend on what value of b4 is picked.

When n is odd, let n = 2m+ 1 and we have:

b21 = −a21 ×
a22a

2
3

b22b
2
3

× a24a
4
5

b24b
2
5

× · · · ×
a22ma

2
2m+1

b22mb
2
2m+1

= −a21
=⇒ b1 = ±ia1

and so b1 is restricted to 2 choices.

When n is even (let n = 2m), we have:

b21 = −a21 ×
a22a

2
3

b22b
2
3

× a24a
4
5

b24b
2
5

× · · · × a22m
b22m

= −a21 ×
a22m
b22m

and so b1 can be arbitrarily picked.
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3 We have:

(z − eiθ)(z − e−iθ) = z2 − z
(

eiθ + e−iθ
)

+ e(iθ−iθ)

= z2 − z (cos θ + i sin θ + cos θ − i sin θ) + 1

= z2 − 2z cos θ + 1

−1 can be written as eiπ. This means that the (2n)th roots of −1 are:

e
i
(
π+2mπ

2n

)
= e

i
(
2m+1
2n

)
π

We could take 0 6 m 6 2n − 1, but as the question says it wants the roots in a form with
−π < θ 6 π it would be better to take m in the range −n 6 m 6 n− 1. This gives the roots
in the form eiθ where θ =

(−2n+1
2n

)
π,
(−2n+3

2n

)
π, · · · ,

(
2n−3
2n

)
π,
(
2n−1
2n

)
π. Noting that these

come in pairs we can write the roots as e
±i

(
2m+1
2n

)
π

where 0 6 m 6 n− 1.

It is sometimes easier to find the roots by drawing a diagram. You should be able to see
that one root makes an angle of π

2n with the positive real axis and then there are 2n of these
equally spaced around the origin.

Using this we have:

z2n + 1 =
n−1∏
m=0

(
z − e

i
(
2m+1
2n

)
π
)(

z − e
−i

(
2m+1
2n

)
π
)

=

n∏
k=1

(
z − e

i
(
2k−1
2n

)
π
)(

z − e
−i

(
2k−1
2n

)
π
)

where k = m+ 1

=

n∏
k=1

(
z2 − 2z cos

(
(2k−1)π

2n

)
+ 1
)

using the first result

(i) When z = i we have z2n = (z2)n = (−1)n, so if n is even, z2n = 1. Using the result
shown in the stem we have:

z2n + 1 =

n∏
k=1

(
z2 − 2z cos

(
(2k−1)π

2n

)
+ 1
)

2 =

n∏
k=1

(
���(−1)− 2i cos

(
(2k−1)π

2n

)
��+1

)
2 = (−1)n2nin

n∏
k=1

cos
(
(2k−1)π

2n

)
2 = 1× 2n × (−1)

1
2
n × cos

(
π
2n

)
× cos

(
3π
2n

)
× cos

(
5π
2n

)
× · · · × cos

(
(2n−1)π

2n

)
Therefore:

cos
(
π
2n

)
cos
(
3π
2n

)
cos
(
5π
2n

)
· · · cos

(
(2n−1)π

2n

)
=

2

2n × (−1)
1
2
n

= 21−n(−1)
1
2
n
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(ii) At first glance this question looks very similar to the last one. However, if n is odd
then z2n + 1 = (−1)n + 1 = 0, which is slightly problematic.

Considering the RHS of the second result of the stem we have:
n∏
k=1

(
z2 − 2z cos

(
(2k−1)π

2n

)
+ 1
)

=
(
z2 − 2z cos

(
π
2n

)
+ 1
)
×

(
z2 − 2z cos

(
3π
2n

)
+ 1
)
× · · · ×

(
z2 − 2z cos

(
(n−2)π

2n

)
+ 1
)

×
(
z2 − 2z cos

(
nπ
2n

)
+ 1
)
×
(
z2 − 2z cos

(
(n+2)π

2n

)
+ 1
)

× · · · ×
(
z2 − 2z cos

(
(2n−1)π

2n

)
+ 1
)

The arguments are in the form odd number×π
2n , so if n is odd one will be nπ

2n .

Since cos
(
nπ
2n

)
= cos 1

2π = 0, we have z2 − 2z cos
(
nπ
2n

)
+ 1 = z2 + 1. Using z2n + 1 =

(z2 + 1)(1− z2 + z4 − · · ·+ z2n−2) gives us:

(1− z2 + z4 − · · ·+ z2n−2) =
(
z2 − 2z cos

(
π
2n

)
+ 1
)
×(

z2 − 2z cos
(
3π
2n

)
+ 1
)
× · · · ×

(
z2 − 2z cos

(
(n−2)π

2n

)
+ 1
)
×(

z2 − 2z cos
(
(n+2)π

2n

)
+ 1
)
× · · · ×

(
z2 − 2z cos

(
(2n−1)π

2n

)
+ 1
)

Then substituting z = i gives:

(1− i2 + i4 + · · ·+ (−1)n−1) =
(
(−1)− 2i cos

(
π
2n

)
+ 1
)
×(

(−1)− 2i cos
(
3π
2n

)
+ 1
)
× · · · ×

(
(−1)− 2i cos

(
(n−2)π

2n

)
+ 1
)

×
(

(−1)− 2i cos
(
(n+2)π

2n

)
+ 1
)
× · · ·×(

(−1)− 2i cos
(
(2n−1)π

2n

)
+ 1
)

n = (−2i)n−1 × cos
( π

2n

)
× cos

(
3π

2n

)
× · · ·

× cos

(
(n− 2)π

2n

)
× cos

(
(n+ 2)π

2n

)
× · · · × cos

(
(2n− 1)π

2n

)

Noting that in−1 = (−1)
n−1
2 and that cos(π − α) = − cosα we have:

n = (−1)n−12n−1(−1)
n−1
2 × cos

( π
2n

)
cos

(
3π

2n

)
· · · cos

(
(n− 2)π

2n

)
× (−1)

n−1
2 cos

( π
2n

)
cos

(
3π

2n

)
· · · cos

(
(n− 2)π

2n

)
= (−1)n−12n−1(−1)

n−1
2 (−1)

n−1
2 × cos2

( π
2n

)
cos2

(
3π

2n

)
· · · cos2

(
(n− 2)π

2n

)
Then, using (−1)n−1 = 1 we have:

n21−n = cos2
( π

2n

)
cos2

(
3π

2n

)
· · · cos2

(
(n− 2)π

2n

)
as required.
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4 α, β and γ are the three vertices of a triangle then then we have one of the cases below:

Then the triangle is equilateral if and only if the point γ is a rotation of point β about point
α of π

3 radians either clockwise or anti-clockwise.5

This gives:

γ − α = e
iπ
3 (β − α) or (*)

γ − α = e−
iπ
3 (β − α)

This is true if and only if: [
γ − α− e

iπ
3 (β − α)

][
γ − α− e−

iπ
3 (β − α)

]
= 0

(γ − α)2 −
(

e
iπ
3 + e−

iπ
3

)
(β − α) (γ − α) + (β − α)2 = 0

(γ − α)2 −
(
2 cos

(
π
3

))
(β − α) (γ − α) + (β − α)2 = 0(

γ2 − 2γα+ α2
)
− (β − α) (γ − α) +

(
β2 − 2βα+ α2

)
= 0

γ2 − 2γα+ α2 −
(
βγ − βα− αγ + α2

)
+ β2 − 2βα+ α2 = 0

α2 + β2 + γ2 − βγ − γα− αβ = 0

The third line of the working above uses cos θ = 1
2

(
eiθ + e−iθ

)
.

To convince myself that (∗) is true (geometry not being my strongest area) I had to do a
little work. I know that multiplying by eiθ represents a rotation of θ anti-clockwise about the
origin.

To justify (∗) I translated the triangle so that the point represented by α was at the origin,
so that the other two points are now at β − α and γ − α. I can now deduce the result

γ − α = e±
iπ
3 (β − α) as this is now a case of translating about the origin.

Alternatively I could have used that a rotation of point z by angle θ about point c is given

eiθ(z − c) + c. This gives the point γ as γ = e±
iπ
3 (β − α) + α, which is equivalent to (∗).

5This then means that the triangle is isosceles as lengths |β−α| and |γ−α| are equal and since the angle between
these equal sides is 60◦ then the other two angles are also 60◦ and hence the triangle is equilateral.
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Let the roots of the equation be α, β and γ. Then (z − α)(z − β)(z − γ) ≡ z3 + az2 + bz + c
gives us:

a = − (α+ β + γ)

b = αβ + βγ + γα

c = −αβγ

Then we have:

a2 − 3b = (α+ β + γ)2 − 3 (αβ + βγ + γα)

= α2 + β2 + γ2 + 2βγ + 2γα+ 2αβ − 3 (αβ + βγ + γα)

= α2 + β2 + γ2 − βγ − γα− αβ

Hence a2 = 3b if and only if α2 +β2 +γ2−βγ−γα−αβ = 0, so the roots form an equilateral
triangle if and only if a2 = 3b.

Substituting z = pw + q into z3 + az2 + bz + c = 0 gives:

(pw + q)3 + a(pw + q)2 + b(pw + q) + c = 0

p3w3 + 3p2qw2 + 3pq2w + q3 + a
(
p2w2 + 2pqw + q2

)
+ b(pw + q) + c = 0

p3w3 +
(
3p2q + ap2

)
w2 +

(
3pq2 + 2apq + bp

)
w +

(
q3 + aq2 + bq + c

)
= 0

w3 +

(
3p2q + ap2

)
p3

w2 +

(
3pq2 + 2apq + bp

)
p3

w +

(
q3 + aq2 + bq + c

)
p3

= 0

Note that p 6= 0 so we can divide by p3.

Then we have:

A2 − 3B =
1

p6
(
9p4q2 + 6ap4q + a2p4

)
− 3

p3
(
3pq2 + 2apq + bp

)
=

1

p3
(
9pq2 + 6apq + a2p− 9pq2 − 6apq − 3bp

)
=

1

p3
(
a2p− 3bp

)
=

1

p2
(
a2 − 3b

)
So a2 − 3b = 0 =⇒ A2 − 3B = 0, and so if the roots of z3 + az2 + bz + c = 0 represent the
vertices of an equilateral triangle then the roots of w3 + Aw2 + Bw + C = 0 also represent
the vertices of an equilateral triangle.

Alternatively, we could argue that the transformation w 7→ pw is a rotation and an enlarge-
ment, so the triangle formed after this transformation is similar to the original one. Then
the transformation pw 7→ pw+ q is a translation, so the triangle here is congruent to the one
before.

Hence the triangles which has vertices w1, w2, w3 and those with vertices z1, z2, z3 where
zi = pwi + q are similar, and hence if the triangle with vertices z1, z2, z3 is equilateral then
so is the one with vertices w1, w2, w3. This argument does have the advantage that there is
less algebra to go wrong with!
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In the solutions provided by the Admissions Testing Service and by MEI it is stated without
proof that the triangle is equilateral if and only if:

β − γ = ω (γ − α) or

β − γ = ω2 (γ − α) (*)

where ω is the cube root of unity equal to
−1 + i

√
3

2
.

We then have that the triangle is equilateral if and only if:

[β − γ − ω (γ − α)]×
[
β − γ − ω2 (γ − α)

]
= 0

[β − γ (1 + ω) + αω]×
[
β − γ

(
1 + ω2

)
+ αω2

]
= 0[

β + γω2 + αω
]
×
[
β + γω + αω2

]
= 0

This last step uses the fact that 1 + ω + ω2 = 0. This can be seen by considering the cube
roots of unity geometrically or by noting that the cube roots satisfy ω3 − 1 = 0, which can
be written as (ω − 1)

(
ω2 + ω + 1

)
= 0.

Expanding the brackets gives us:

β2 + γ2ω3 + α2ω3 + βγ
(
ω + ω2

)
+ αβ

(
ω + ω2

)
+ γα

(
ω + ω2

)
= 0

β2 + γ2 + α2 − βγ − αβ − γα = 0

Where the last step uses ω3 = 1 and 1 + ω + ω2 = 0.

The fact (∗) was stated just as a fact, and it appears that no justification is necessary.
However, I wanted to convince myself why this is true before using it. The diagram below
shows the two different cases.

For the first one, the triangle is equilateral if and only if point β is formed by translating point
γ by 120◦ anticlockwise about α and then translating it by γ − α. Using z 7→ eiθ(z − c) + c

for a rotation of θ anti clockwise about point c and that ei
2π
3 = ω gives us:

β = ω (γ − α) + α+ (γ − α) i.e.

β − γ = ω (γ − α)
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A similar argument can be used for the other triangle, but this time the rotation is 120◦

clockwise or equivalently 240◦ anti-clockwise, which is represented by multiplication by ω2.

Having done this I then worked through this part of the question again, using the working
shown above. I decided that I preferred my method, so presented that as the given “solution”
here!

STEP III 2008 Q7 has another complex number question involving equilateral triangles.
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