STEP Support Programme

STEP 3 Polar Coordinates and other Coordinate Geometry: Questions

$1 \quad 2009$ S3 Q1
The points S, T, U and V have coordinates $(s, m s),(t, m t),(u, n u)$ and $(v, n v)$, respectively. The lines $S V$ and $U T$ meet the line $y=0$ at the points with coordinates $(p, 0)$ and $(q, 0)$, respectively. Show that

$$
p=\frac{(m-n) s v}{m s-n v},
$$

and write down a similar expression for q.
Given that S and T lie on the circle $x^{2}+(y-c)^{2}=r^{2}$, find a quadratic equation satisfied by s and by t, and hence determine st and $s+t$ in terms of m, c and r.
Given that S, T, U and V lie on the above circle, show that $p+q=0$.
$2 \quad 2004$ S3 Q4
The triangle $O A B$ is isosceles, with $O A=O B$ and angle $A O B=2 \alpha$ where $0<\alpha<\frac{\pi}{2}$. The semi-circle C_{0} has its centre at the midpoint of the base $A B$ of the triangle, and the sides $O A$ and $O B$ of the triangle are both tangent to the semi-circle. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots$ are circles such that C_{n} is tangent to C_{n-1} and to sides $O A$ and $O B$ of the triangle.
Let r_{n} be the radius of C_{n}. Show that

$$
\frac{r_{n+1}}{r_{n}}=\frac{1-\sin \alpha}{1+\sin \alpha} .
$$

Let S be the total area of the semi-circle C_{0} and the circles $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots$ Show that

$$
S=\frac{1+\sin ^{2} \alpha}{4 \sin \alpha} \pi r_{0}^{2} .
$$

Show that there are values of α for which S is more than four fifths of the area of triangle $O A B$.
$3 \quad 1993 \mathrm{~S} 3 \mathrm{Q} 2$
The curve C has the equation $x^{3}+y^{3}=3 x y$.
(i) Show that there is no point of inflection on C. You may assume that the origin is not a point of inflection.
(ii) The part of C which lies in the first quadrant is a closed loop touching the axes at the origin. By converting to polar coordinates, or otherwise, evaluate the area of this loop.

$4 \quad 2008$ S3 Q3

The point $P(a \cos \theta, b \sin \theta)$, where $a>b>0$, lies on the curve

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The point S is located at $(-e a, 0)$, where $b^{2}=a^{2}\left(1-e^{2}\right)$.
The point N is the foot of the perpendicular from the origin, O, to the tangent to the ellipse at P. The lines $S P$ and $O N$ intersect at T. Show that the y-coordinate of T is

$$
\frac{b \sin \theta}{1+e \cos \theta} .
$$

Show that T lies on the circle with centre S and radius a.
This question has been edited very slightly to remove references to "ellipse" and "focus".

2011 S3 Q5
A movable point P has cartesian coordinates (x, y), where x and y are functions of t. The polar coordinates of P with respect to the origin O are r and θ. Starting with the expression

$$
\frac{1}{2} \int r^{2} \mathrm{~d} \theta
$$

for the area swept out by $O P$, obtain the equivalent expression

$$
\begin{equation*}
\frac{1}{2} \int\left(x \frac{\mathrm{~d} y}{\mathrm{~d} t}-y \frac{\mathrm{~d} x}{\mathrm{~d} t}\right) \mathrm{d} t \tag{*}
\end{equation*}
$$

The ends of a thin straight $\operatorname{rod} A B$ lie on a closed convex curve \mathcal{C}. The point P on the rod is a fixed distance a from A and a fixed distance b from B. The angle between $A B$ and the positive x direction is t. As A and B move anticlockwise round \mathcal{C}, the angle t increases from 0 to 2π and P traces a closed convex curve \mathcal{D} inside \mathcal{C}, with the origin O lying inside \mathcal{D}, as shown in the diagram.

Let (x, y) be the coordinates of P. Write down the coordinates of A and B in terms of a, b, x, y and t.
The areas swept out by $O A, O B$ and $O P$ are denoted by $[A],[B]$ and $[P]$, respectively. Show, using $(*)$, that

$$
[A]=[P]+\pi a^{2}-a f
$$

where

$$
f=\frac{1}{2} \int_{0}^{2 \pi}\left(\left(x+\frac{\mathrm{d} y}{\mathrm{~d} t}\right) \cos t+\left(y-\frac{\mathrm{d} x}{\mathrm{~d} t}\right) \sin t\right) \mathrm{d} t
$$

Obtain a corresponding expression for $[B]$ involving b. Hence show that the area between the curves \mathcal{C} and \mathcal{D} is $\pi a b$.

