STEP Support Programme

STEP 3 Hyperbolic Functions Questions

$1 \quad 2004$ S3 Q1

Show that

$$
\int_{0}^{a} \frac{\sinh x}{2 \cosh ^{2} x-1} \mathrm{~d} x=\frac{1}{2 \sqrt{2}} \ln \left(\frac{\sqrt{2} \cosh a-1}{\sqrt{2} \cosh a+1}\right)+\frac{1}{2 \sqrt{2}} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)
$$

and find

$$
\int_{0}^{a} \frac{\cosh x}{1+2 \sinh ^{2} x} \mathrm{~d} x
$$

Hence show that

$$
\int_{0}^{\infty} \frac{\cosh x-\sinh x}{1+2 \sinh ^{2} x} \mathrm{~d} x=\frac{\pi}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)
$$

By substituting $u=\mathrm{e}^{x}$ in this result, or otherwise, find

$$
\int_{1}^{\infty} \frac{1}{1+u^{4}} \mathrm{~d} u
$$

You might like to look at 2014 STEP 3 Question 2, which is similar to this one.
$2 \quad 2011$ S3 Q6
The definite integrals T, U, V and X are defined by

$$
\begin{array}{ll}
T=\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{\operatorname{artanh} t}{t} \mathrm{~d} t, & U=\int_{\ln 2}^{\ln 3} \frac{u}{2 \sinh u} \mathrm{~d} u, \\
V=-\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{\ln v}{1-v^{2}} \mathrm{~d} v, & X=\int_{\frac{1}{2} \ln 2}^{\frac{1}{2} \ln 3} \ln (\operatorname{coth} x) \mathrm{d} x .
\end{array}
$$

Show, without evaluating any of them, that T, U, V and X are all equal.
$3 \quad 2007$ S3 Q5
Let $y=\ln \left(x^{2}-1\right)$, where $x>1$, and let r and θ be functions of x determined by $r=\sqrt{x^{2}-1}$ and $\operatorname{coth} \theta=x$. Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cosh \theta}{r} \quad \text { and } \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{2 \cosh 2 \theta}{r^{2}}
$$

and find an expression in terms of r and θ for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$.
Find, with proof, a similar formula for $\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$ in terms of r and θ.

2005 S3 Q6
In this question, you may use without proof the results

$$
4 \cosh ^{3} y-3 \cosh y=\cosh (3 y) \quad \text { and } \quad \operatorname{arcosh} y=\ln \left(y+\sqrt{y^{2}-1}\right)
$$

[Note: arcoshy is another notation for $\cosh ^{-1} y$]
Show that the equation $x^{3}-3 a^{2} x=2 a^{3} \cosh T$ is satisfied by $2 a \cosh \left(\frac{1}{3} T\right)$ and hence that, if $c^{2} \geqslant b^{3}>0$, one of the roots of the equation $x^{3}-3 b x=2 c$ is $u+\frac{b}{u}$, where $u=\left(c+\sqrt{c^{2}-b^{3}}\right)^{\frac{1}{3}}$. Show that the other two roots of the equation $x^{3}-3 b x=2 c$ are the roots of the quadratic equation

$$
x^{2}+\left(u+\frac{b}{u}\right) x+u^{2}+\frac{b^{2}}{u^{2}}-b=0
$$

and find these roots in terms of u, b and ω, where $\omega=\frac{1}{2}(-1+\mathrm{i} \sqrt{3})$.
Solve completely the equation $x^{3}-6 x=6$.

