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Question 1

Express the determinant ∣∣∣∣∣∣
a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
as the product of factors which are linear in a, b, c.

This determinant has a lot of symmetry: each column is identical, except for the variable. We
therefore use row and column operations to simplify the determinant and to extract factors. (See
the notes on matrices for a discussion of row and column operations.) We could also solve this
question by expanding the determinant and extracting factors, but this approach – though more
sophisticated – captures the structure of the situation.

There is nothing wrong with expanding the determinant. You should obtain something of the form
abc(bc2− b2c− ac2 + a2c+ ab2− ba2). Factorising further is a bit tricky, but if you substitute a = b
into your expression for the determinant you should find that this makes the determinant equal to
0. Hence you should be able to extract a factor of (a− b). This is a little tricky, but can be done
by long division, or by using a table to help you (such as below):

ac −c2 bc −ab
a a2c −ac2 ��abc −a2b
−b ���−abc bc2 −b2c ab2

We note first that column 1 is a multiple of a, column 2 is a multiple of b and column 3 is a multiple
of c, so we take these out as factors to begin with:∣∣∣∣∣∣

a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = abc

∣∣∣∣∣∣
1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣ .
We now note that if a = b, then the first two columns are identical, so the determinant is zero
in this case. It follows from the factor theorem that (a − b) is a factor of the determinant. (The
determinant is a polynomial in a, b and c. Now think of it as a polynomial in a, treating b and c
as constants. When a = b, the polynomial equals zero, and so a− b is a factor.)

Likewise, if c = a the first and third columns are identical, and if b = c the second and third columns
are identical. Therefore (c− a) and (b− c) are also factors of the determinant. But every term in
the expansion of the simplified determinant consists of 1 times a, b or c, times a2, b2 or c2, so has
total degree 3 (the sum of the powers of all variables appearing in the term). As (a−b)(b−c)(c−a)
also has total degree 3, the determinant must be a scalar multiple of this. So∣∣∣∣∣∣

a b c
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = kabc(a− b)(b− c)(c− a)

for some k. Looking at the leading diagonal, we see that one of the terms in the determinant is
ab2c3, and this term appears in the expansion of kabc(a−b)(b−c)(c−a) as kab2c3 (we need a b and
two c’s in the expansion of the brackets, so we get (−b)(−c)(c) = bc2 from that part). Therefore
k = 1, and the determinant equals abc(a− b)(b− c)(c− a).
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Hence, or otherwise, find x : y : z : u if

x+ 2 y + 3 z + 4 u = 0,

x+ 22y + 32z + 42u = 0,

x+ 23y + 33z + 43u = 0.

We can write these equations as three simultaneous equations in x, y and z if we regard u as a
constant:

x+ 2 y + 3 z = −4 u,

x+ 22y + 32z = −42u,

x+ 23y + 33z = −43u.

We also note that the coefficients of x, y, z and u exactly match the entries in the determinant we
have just calculated.

We therefore have

detA =

∣∣∣∣∣∣
1 2 3
12 22 32

13 23 33

∣∣∣∣∣∣ = 1.2.3.(−1).(−1).2 = 12,

and the adjugate matrix is:22 × 33 − 23 × 32 23 × 3− 2× 33 2× 32 − 22 × 3
32 − 33 33 − 3 3− 32

23 − 22 2− 23 22 − 2

 =

 36 −30 6
−18 24 −6

4 −6 2


We then have: xy

z

 =
1

12

 36 −30 6
−18 24 −6

4 −6 2

×
 −4u
−16u
−64u


=

1

3

 36 −30 6
−18 24 −6

4 −6 2

×
 −u−4u
−16u


=

1

3

−36 + 4× 30− 6× 16
18− 4× 24 + 6× 16
−4 + 4× 6− 2× 16

u

=
1

3

6(−6 + 4× 5− 16)
6(3− 4× 4 + 16)
4(−1 + 6− 2× 4)

u

=
1

3

6×−2
6× 3

4×−3

u

=

−4u
6u
−4u
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Thus the ratio x : y : z : u is

−4u : 6u : −4u : u = −4 : 6 : −4 : 1 = 4 : −6 : 4 : −1.

It is certainly worth us checking our solution: if we take x = 4, y = −6, z = 4 and u = −1, our
equations become

4 + 2(−6) + 3.4 = −4(−1),

4 + 22(−6) + 32.4 = −42(−1),

4 + 23(−6) + 33.4 = −43(−1),

which are all true.
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Question 2

Prove that (a− b) and (x− y) are factors of the determinant∣∣∣∣∣∣
(a+ x)2 (a+ y)2 (a+ z)2

(b+ x)2 (b+ y)2 (b+ z)2

(c+ x)2 (c+ y)2 (c+ z)2

∣∣∣∣∣∣
and factorise the determinant completely.

This determinant has a lot of symmetry, which suggests that it will have simple factors. If we were
to expand this determinant, we would get a polynomial in a, b, c, x, y and z. Every term in the
polynomial would have total degree 6 (that is the sum of the powers of every variable appearing in
the polynomial). We can also, if we wish, think of the determinant as a polynomial in just a single
variable, with coefficients being expressions in the other five variables.

If we let b = a, then the first two rows are identical and hence the determinant is zero. So if we
think of the determinant as a polynomial in a, we find that (a− b) is a factor of the determinant,
using the factor theorem. Likewise, if we let c = b or a = c, we again get zero, so (b− c) and (c−a)
are also factors. In a similar fashion, if we let x = y, the first two columns become identical, so
(x− y) is a factor; (y − z) and (z − x) are factors in the same way.

Therefore, the determinant is a multiple of (a−b)(b−c)(c−a)(x−y)(y−z)(z−x). This polynomial
has total degree 6, and so the determinant is just a scalar multiple of this expression.

We can find the scalar multiple either by choosing specific values for the variables and evaluating
the determinant and this expression, or by considering a specific term and calculating its coefficient
in the expansion of the determinant. We will use the second method for illustrative purposes.

If we consider a2b2c2, obtained by multiplying the expressions on the leading diagonal, we see that
it does not appear in the expansion of (a− b)(b− c)(c− a)(x− y)(y− z)(z−x). This will therefore
not help us. Instead, we can consider some term appearing in the expansion of this expression, say
a2bx2y, which appears with coefficient 1 here. In the expansion of the determinant, as we need
a2x2, we cannot use the top-left term (as that would give us a total power of 2 for a and x). We
must therefore obtain a2 from (a + y)2 or (a + z)2 and x2 from (b + x)2 or (c + x)2; we therefore
only need to consider the following simplified determinant to identify these terms:∣∣∣∣∣∣

0 a2 a2

x2 (b+ y)2 (b+ z)2

x2 (c+ y)2 (c+ z)2

∣∣∣∣∣∣ = a2x2

∣∣∣∣∣∣
0 1 1
1 (b+ y)2 (b+ z)2

1 (c+ y)2 (c+ z)2

∣∣∣∣∣∣
Now, we want terms of the form a2bx2y, so the determinant part of this final expression must
give terms of the form by. There is only one expression capable of doing this, which is (b + y)2 =
b2 + 2by + y2, so the coefficient of by is −2, obtained from the product of the three highlighted
terms here (paying attention to the sign of this term in the determinant):∣∣∣∣∣∣

0 1 1
1 (b+ y)2 (b+ z)2

1 (c+ y)2 (c+ z)2

∣∣∣∣∣∣
Therefore the original determinant factorises as

−2(a− b)(b− c)(c− a)(x− y)(y − z)(z − x).
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Question 3

Given that α, β, γ are the roots of the equation∣∣∣∣∣∣
a b x
x c a
c x b

∣∣∣∣∣∣ = 0,

prove that
α3 + β3 + γ3 = −6abc.

One thing that is striking about this question is that it is connecting the roots of a cubic to a
determinant. The determinant does not seem particularly helpful, so we start by evaluating the
determinant; this gives

x3 − (a2 + b2 + c2)x+ 2abc = 0. (1)

Perhaps surprisingly, this is symmetric in a, b and c, even though the form of the determinant does
not seem to suggest this.

We could now use what we know about roots of polynomials to solve this problem. We can write
this polynomial as

(x− α)(x− β)(x− γ) = x3 − (α+ β + γ)x2 + (αβ + βγ + γα)x− αβγ = 0,

so comparing the equations gives

α+ β + γ = 0

αβ + βγ + γα = −(a2 + b2 + c2)

αβγ = −2abc.

(2)

We can now calculate

(α+ β + γ)3 = α3 + β3 + γ3 + 3(α2β + β2γ + γ2α+ α2γ + β2α+ γ2β) + 6αβγ (3)

and
(α+ β + γ)(αβ + βγ + γα) = (α2β + β2γ + γ2α+ α2γ + β2α+ γ2β) + 3αβγ. (4)

We can now substitute our known values for α+β+ γ from equations (2) into equation (4), giving

0(−(a2 + b2 + c2)) = (α2β + β2γ + γ2α+ α2γ + β2α+ γ2β)− 6abc,

so that
α2β + β2γ + γ2α+ α2γ + β2α+ γ2β = 6abc.

Substituting this result into equation (3) gives

03 = α3 + β3 + γ3 + 3(6abc) + 6(−2abc)

and hence
α3 + β3 + γ3 = −6abc.
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Another thing we could do, which would be significantly simpler, is to substitute α, β and γ into
our original polynomial equation (1). Since these are roots of the polynomial, they satisfy the
equation. This gives us three equations:

α3 − (a2 + b2 + c2)α+ 2abc = 0

β3 − (a2 + b2 + c2)β + 2abc = 0

γ3 − (a2 + b2 + c2)γ + 2abc = 0

(5)

Adding these together gives

(α3 + β3 + γ3)− (a2 + b2 + c2)(α+ β + γ) + 6abc = 0.

Now using α+ β + γ = 0 from equations (2) gives

α3 + β3 + γ3 = −6abc.

Incidentally, if we first multiplied the equations in (5) by α, β, γ respectively, we could find an
expression for α4 +β4 +γ4 in a similar way (though we would have to first calculate α2 +β2 +γ2 =
(α + β + γ)2 − 2(αβ + βγ + γα)). By an inductive process, we would likewise be able to find
αn + βn + γn for any n > 3 in this way.
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Question 4

Prove that if the equations

a1x+ b1y + c1z = 0

a2x+ b2y + c2z = 0

a3x+ b3y + c3z = 0


are simultaneously satisfied by values of x, y, z which are not all zero, then∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = 0.

We can write the simultaneous equations as Ax = 0, where A =

a1 b1 c1
a2 b2 c2
a3 b3 c3

 and x =

xy
z

. If

detA 6= 0, then A is invertible and x = A−10 = 0. So if the equations have a solution with x 6= 0,
then A cannot be invertible, and so detA = 0, as required.

Hence, or otherwise, eliminate x, y, z from the equations

a =
x

y − z
, b =

y

z − x
, c =

z

x− y
.

[Your answer should not be left in determinant form.]

It is not clear how this is related to the previous part of the question, but we can at least express
these equations as linear equations in x, y and z. The first equation, on multiplying by y− z, gives
a(y − z) = x, so x− ay + az = 0. Doing the same to the other two gives

x− ay + az = 0

bx+ y − bz = 0

−cx+ cy + z = 0

Returning now to our original three formulae for a, b and c, we observe that if we choose distinct
values of x, y and z, then this gives us values of a, b and c. For these values of a, b and c, we
should be able to obtain our original chosen values of x, y and z from these three simultaneous
equations, at least up to a constant factor. (Note that if we replace x, y and z by λx, λy and λz,
we obtain the same values of a, b and c.) Therefore the determinant of the coefficients of these
three simultaneous equations must be zero, from the previous part.
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Thus ∣∣∣∣∣∣
1 −a a
b 1 −b
−c c 1

∣∣∣∣∣∣ = 0,

which expands to give
ab+ bc+ ca+ 1 = 0,

and we have successfully eliminated x, y and z.

STEP 3 Matrices Solutions 9

https://maths.org/step/


maths.org/step

Question 5

A matrix M is said to be transposed into the matrix MT if the first row of M becomes the first
column of MT, the second row of M becomes the second column of MT, and so on. Write down
the transposes of the matrices

M =

xy
z

 , T =

0 b 0
0 0 c
a 0 0

 .

Calculate the matrix products MTM and TM; show also that (TM)T = MTTT.

The transposes are

MT =
(
x y z

)
, TT =

0 0 a
b 0 0
0 c 0

 .

Then

MTM =
(
x y z

)xy
z

 =
(
x2 + y2 + z2

)
,

which is a 1 × 1 matrix or 1-dimensional vector; we could also conveniently think of this as the
scalar x2 + y2 + z2 (though the next part of the question does talk about “the element of MTM”).

Also,

TM =

0 b 0
0 0 c
a 0 0

xy
z

 =

bycz
ax

 .

We can then check that (TM)T = MTTT by calculating:

(TM)T =
(
by cz ax

)
;

MTTT =
(
x y z

)0 0 a
b 0 0
0 c 0


=
(
yb zc xa

)
,

so they are equal as required.

This is an example of the general rule that for any conformable matrices A and B, (AB)T = BTAT.
A proof of this appears in Question 15.
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If the elements of M are the Cartesian coordinates of a point P , what information is provided
by the element of MTM?

The single element of MTM is x2 + y2 + z2, which is the square of the distance of P from the
origin.

If the matrix T describes a transformation of the points P of three dimensional space, interpret
geometrically the equation

(TM)T(TM) = MTM,

and find all appropriate values of a, b and c for which this equation holds for all points P .

TM is the image of the point P , so by the previous part, (TM)T(TM) is the square of the distance
of the image of P from the origin. Therefore the equation means that the square of the distance
of the point P from the origin equals the square of the distance of the image of P from the origin.
Since distances are never negative, we can take the square root, so the equation means that the
point P and its image are the same distance from the origin.

Algebraically, if the equation holds for all points P , we need

(by)2 + (cz)2 + (ax)2 = x2 + y2 + z2

for all x, y and z.

Since this has to be true for all values of x, y and z, we will help ourselves by choosing really
convenient values to start with.

Taking x = 1, y = z = 0, we get a2 = 1, so we must have a = ±1. Similarly, we find b = ±1 and
c = ±1 (where the signs of a, b and c are independent of each other). In this case,

(by)2 + (cz)2 + (ax)2 = b2y2 + c2z2 + a2x2 = y2 + z2 + x2

so for these values of a, b and c, the equation holds for all points P .

Note that it was not enough to show that a = ±1, b = ±1 and c = ±1 and to stop there: all we
have shown at that point is that this is necessary for the equation to hold for all points P , but it
may not be sufficient. To show that this is sufficient, we must also show that when a, b and c take
these values, the equation is satisfied for all points P .
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Question 6

The functions t → P, t → Q map real numbers t onto matrices P, Q of fixed dimension; that
is, each element of each matrix is a real function of t, and we suppose all the functions to be
differentiable. A scalar multiplier s is also a function of t. The derivative of a matrix is defined
as a matrix whose elements are the derivatives of the elements of the original matrix. We write
dP/dt as Ṗ, ds/dt as ṡ, and so on.

Let us write pij for the (i, j)th element of P, and likewise qij for the (i, j)th element of Q. So

P =

p11 p12 · · ·
p21 p22 · · ·
...

...
. . .

 .

Then we can differentiate this with respect to t to get

Ṗ =

ṗ11 ṗ12 · · ·
ṗ21 ṗ22 · · ·
...

...
. . .

 ,

using the definition of the derivative of a matrix we have been given, so the (i, j)th element of Ṗ
is ṗij .

(i) Prove that
d

dt
(sP) = ṡP + sṖ.

As s is a scalar, we have

sP =

sp11 sp12 · · ·
sp21 sp22 · · ·
...

...
. . .

 .

Differentiating this matrix with respect to t, by differentiating each element, we get

d

dt
(sP) =


d
dt(sp11)

d
dt(sp12) · · ·

d
dt(sp21)

d
dt(sp22) · · ·

...
...

. . .

 .

More efficiently, we could say instead: The (i, j)th element of sP is spij , so the (i, j)th element of
d
dt(sP) is d

dt(spij).

Now using the product rule, we have

d

dt
(spij) =

d

dt
(s)pij + s

d

dt
(pij) = ṡpij + sṗij ,
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which is exactly the (i, j)th element of ṡP + sṖ. Therefore

d

dt
(sP) = ṡP + sṖ.

(ii) If the product PQ is defined, prove that

d

dt
(PQ) = ṖQ + PQ̇.

Let us write R = PQ. To prove this, we need an expression for the (i, j)th element of R, so that
we can differentiate it. This element is obtained by multiplying the ith row of P by the jth column
of Q:

R =


. . .

... . .
.

· · · rij · · ·

. .
. ...

. . .

 =


...

...
... . .

.

pi1 pi2 pi3 · · ·
...

...
...

. . .



· · · q1j · · ·
· · · q2j · · ·
· · · q3j · · ·

. .
. ...

. . .


so that

rij = pi1q1j + pi2q2j + pi3q3j + · · · =
∑
k

pikqkj

where the sum is from k = 1 to the number of columns of P or the number of rows of Q (which
are equal to each other).

We can now differentiate this expression using the product rule: the (i, j)th element of Ṙ is

ṙij = (ṗi1q1j + pi1q̇1j) + (ṗi2q2j + pi2q̇2j) + . . .

=
∑
k

(ṗikqkj + pikq̇kj)

=
∑
k

ṗikqkj +
∑
k

pikq̇kj

In the final expression, the first sum is the (i, j)th element of ṖQ and the second sum is the (i, j)th
element of PQ̇, using exactly the same reasoning as we used to calculate the (i, j)th element of
PQ. Thus

Ṙ =
d

dt
(PQ) = ṖQ + PQ̇.

(iii) Prove that the derivative of a constant matrix is the zero matrix.

(A constant matrix means that every element is constant with respect to t. It does not necessarily
mean that every element is equal to every other element.) If pij is a constant, then ṗij = 0. So if
pij is constant for every (i, j), then Ṗ = 0, the zero matrix.
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(iv) If M is the rotation matrix (
cos θ − sin θ
sin θ cos θ

)
,

θ being a function of t, prove that Ṁ = MJθ̇, where

J =

(
0 −1
1 0

)
.

We prove this by calculation, making use of the chain rule.

Ṁ =

(
d
dt(cos θ) d

dt(− sin θ)
d
dt(sin θ)

d
dt(cos θ)

)
=

(
− sin θ.θ̇ − cos θ.θ̇

cos θ.θ̇ − sin θ.θ̇

)
= θ̇

(
− sin θ − cos θ
cos θ − sin θ

)
;

MJ =

(
cos θ − sin θ
sin θ cos θ

)(
0 −1
1 0

)
=

(
− sin θ − cos θ
cos θ − sin θ

)
.

Therefore Ṁ = MJθ̇.

The position of a particle in a plane is specified by a vector which can be described either as r
relative to a coordinate system with rectangular axes Ox, Oy, or as r1 relative to a coordinate
system with axes Ox1, Oy1, as shown in the diagram. The angle xOx1, denoted by θ, is a
function of t.

Write an equation connecting r with r1, and prove that

ṙ = M(ṙ1 + Jr1θ̇).
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We can put coordinates on the system to understand what is going on. If P has coordinates (a, b)

in the original coordinate system Oxy, then r =

(
a
b

)
. Now in the Ox1y1 coordinate system, we

need to calculate the x1 coordinate of P . This does not seem straightforward, as we do not know
the angle that P makes with the Ox axis.

There are two useful approaches we could take to move forward, and we will present both.

The first approach is to realise that we can write r =

(
a
0

)
+

(
0
b

)
. Each of these simpler vectors

will be easier to write in the new coordinate system, as we can work with them individually. Now(
a
0

)
in the Oxy coordinate system becomes

(
a cos θ
−a sin θ

)
in the Ox1y1 system, and

(
0
b

)
in the Oxy

system becomes

(
b sin θ
b cos θ

)
in the Ox1y1 system, as we can see from this diagram:

Therefore

r1 =

(
a cos θ
−a sin θ

)
+

(
b sin θ
b cos θ

)
=

(
a cos θ + b sin θ
−a sin θ + b cos θ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
a
b

)
= M−1r,

so that r = Mr1.

On reflection, we might realise that we could have equally started with a vector r1 in the Ox1y1
system, and rewritten that in the Oxy system; this would have saved us from having to use the
inverse of M. The diagrams and working are very similar, and are left as an exercise for the reader.
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A second approach to working with r and r1 is to describe P using polar coordinates (magnitude
and direction). If OP (or r) makes an angle of α with Ox, and has length p, then it makes an angle
of α− θ with Ox1, and still has length p:

Therefore r =

(
p cosα
p sinα

)
and r1 =

(
p cos(α− θ)
p sin(α− θ)

)
. It follows, using the compound angle formulae,

that

r1 =

(
p cos(α− θ)
p sin(α− θ)

)
=

(
p cosα cos θ + p sinα sin θ
p sinα cos θ − p cosα sin θ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
p cosα
p sinα

)
= M−1r;

again, this gives r = Mr1, and we could have obtained this directly by starting with OP making
an angle of β to the Ox1 axis, and then calculating r in terms of r1.

We now need to prove that ṙ = M(ṙ1 + Jr1θ̇). Differentiating r = Mr1, using the above results,
gives

ṙ =
d

dt
(Mr1)

= Ṁr1 + Mṙ1 from (ii)

= (MJθ̇)r1 + Mṙ1 from (iv)

= M(ṙ1 + Jr1θ̇).
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Question 7

If
x = ekt(a cosλt+ b sinλt)

show that
ẋ = ekt(a′ cosλt+ b′ sinλt),

where (
a′

b′

)
=

(
k λ
−λ k

)(
a
b

)
and dot denotes differentiation with respect to t, and find an expression for ẍ with coefficients
given in a similar way.

Differentiating using the product and chain rules gives

ẋ = kekt(a cosλt+ b sinλt) + ekt(−aλ sinλt+ bλ cosλt)

= ekt((ak + bλ) cosλt+ (kb− aλ) sinλt)

= ekt(a′ cosλt+ b′ sinλt)

where (
a′

b′

)
=

(
ak + bλ
kb− aλ

)
=

(
k λ
−λ k

)(
a
b

)
.

Since ẋ has the same form as x, just with the constants a and b replaced by a′ and b′, we can
differentiate it again using the rule we have just derived:

ẍ = ekt(a′′ cosλt+ b′′ sinλt)

where (
a′′

b′′

)
=

(
k λ
−λ k

)(
a′

b′

)
=

(
k λ
−λ k

)2(
a
b

)
=

(
k2 − λ2 2kλ
−2kλ k2 − λ2

)(
a
b

)
.
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A particular integral solution to

ẍ+ 2pẋ+ q2x = ekt(C cosλt+D sinλt)

is
x = ekt(a cosλt+ b sinλt).

Show that (
C
D

)
=

(
(k2 − λ2) + 2pk + q2 2kλ+ 2pλ
−2kλ− 2pλ (k2 − λ2) + 2pk + q2

)(
a
b

)
and hence write

(
a
b

)
in terms of

(
C
D

)
.

Discuss any particular cases.

The left hand side of the differential equation becomes

ekt
(
(a′′ cosλt+ b′′ sinλt) + 2p(a′ cosλt+ b′ sinλt) + q2(a cosλt+ b sinλt)

)
.

Equating coefficients of ekt cosλt and ekt sinλt on the two sides of the equation gives(
C
D

)
=

(
a′′ + 2pa′ + q2a
b′′ + 2pb′ + q2b

)
=

(
k2 − λ2 2kλ
−2kλ k2 − λ2

)(
a
b

)
+ 2p

(
k λ
−λ k

)(
a
b

)
+ q2

(
a
b

)
=

(
(k2 − λ2) + 2pk + q2 2kλ+ 2pλ
−2kλ− 2pλ (k2 − λ2) + 2pk + q2

)(
a
b

)
.

Hence (
a
b

)
=

(
(k2 − λ2) + 2pk + q2 2kλ+ 2pλ
−2kλ− 2pλ (k2 − λ2) + 2pk + q2

)−1(
C
D

)
.

We can invert this matrix explicitly if it is non-singular. The determinant is

∆ =
(
(k2 − λ2) + 2pk + q2

)2
+ (2kλ+ 2pλ)2,

and so (
a
b

)
=

1

∆

(
(k2 − λ2) + 2pk + q2 −2kλ− 2pλ

2kλ+ 2pλ (k2 − λ2) + 2pk + q2

)(
C
D

)
.

The only special case which arises is when the determinant is zero. In such a case, we cannot
determine C and D from this equation; this is either because no particular integral solution to the
equation has this form, or because at least one of the complementary functions has the same form
and so there are infinitely many possibilities for a and b.

Since ∆ is the sum of two squares, it can only be zero if both of the squares are zero, so we would
need

(k2 − λ2) + 2pk + q2 = (k + p)λ = 0.
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There are clearly values of k, λ, p and q which satisfy these, even if we exclude the possibility of
λ = 0 or k = 0; for example, we may take p = −k and q2 = k2 + λ2. In this case, the auxiliary
quadratic is u2 − 2ku + (k2 + λ2) = 0, which has roots k ± λi, giving complementary functions
of the form ekt cosλt and ekt sinλt. We would then have to seek a particular integral of the form
x = tekt(a cosλt+ b sinλt) instead.
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Question 8

Sketch the graph whose equation is

x2 − y2 = a2 (a > 0).

This is a (rectangular) hyperbola. As x→ ±∞, y2 and x2 are approximately the same (y2 = x2−a2,
so y2

x2
= 1− a2

x2
tends to 1 as x2 →∞). Therefore y = x and y = −x are asymptotes.

When x = 0, y2 = −a2, which is impossible, so the graph does not cross the y-axis. As x2 = y2+a2,
x2 > a2, so |x| > a. When y = 0, x = ±a, so these are the x-axis intercepts.

Therefore the graph looks approximately like this:

Prove that the point P (a cosh t, a sinh t) lies on this graph for all real values of t; but that there
are points of the graph which cannot be expressed in this form.

Calculating, we have x2− y2 = (a cosh t)2− (a sinh t)2 = a2(cosh2 t− sinh2 t) = a2, so P lies on this
graph.

Note now that a cosh t > 0 for all real t. However, we have already noted that (−a, 0) lies on the
graph. So there are points of the graph which cannot be expressed in this form.

We get all the points on the right-hand branch of this hyperbola using this form of coordinates.
We can obtain the left-hand branch as (−a cosh t, a sinh t) for real values of t.
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If U is the point of the graph for which t = u, find the area of the region R bounded by the
curve, the line OU and the x-axis. (You may assume that u > 0.)

We first sketch this region:

We see that we can calculate the area of R by finding the area under the right-angled triangle
from the origin to U to (a coshu, 0) and subtracting the area under the graph. The area under the
triangle is

1
2a coshu.a sinhu = 1

2a
2 sinhu coshu = 1

4a
2 sinh 2u,

while the area under the curve is

A =

∫ u

0
y

dx

dt
dt

=

∫ u

0
a sinh t.a sinh t dt

= a2
∫ u

0
sinh2 t dt

= a2
∫ u

0

1
2(cosh 2t− 1) dt

= 1
2a

2
[
1
2 sinh 2t− t

]u
0

= 1
2a

2
(
1
2 sinh 2u− u

)
= 1

4a
2 sinh 2u− 1

2a
2u.

Subtracting these shows that the area of R is 1
2a

2u.

A quick reasonableness check is in order: when u is small (which is probably all that is straightfor-
ward to get our hands on), the area is approximately a triangle with base a and height a sinhu ≈ au,
so the area is approximately 1

2a
2u.
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Prove that the transformation with matrix(
coshα sinhα
sinhα coshα

)
(α 6= 0)

transforms the point P into another point of the curve. Into what region is R transformed by
this? What is the area of the transformed region? Give reasons for your answers.

The point P (a cosh t, a sinh t) is transformed into(
coshα sinhα
sinhα coshα

)(
a cosh t
a sinh t

)
=

(
a coshα cosh t+ a sinhα sinh t
a sinhα cosh t+ a coshα sinh t

)
=

(
a cosh(t+ α)
a sinh(t+ α)

)
,

which is the point P ′ on the hyperbola with parameter t+ α.

The origin is transformed into the origin, the point (a, 0), corresponding to the parameter 0, is
transformed to the point A with parameter α, and the point U is transformed to the point U ′

with parameter u+α. Since linear transformations send straight lines to straight lines (or points),
the part of the x-axis bounding the region R is transformed to the straight line from the origin
to (a coshα, a sinhα) and the line segment OU is transformed to the line segment OU ′, giving the
region R ′:

The area of this region is the area of the region bounded by OU ′, the curve and the x-axis, minus
the area of the region bounded by OA, the curve and the x-axis. Using our above calculation for the
area of R and replacing the parameter, we find the transformed area is 1

2a
2(u+α)− 1

2a
2α = 1

2a
2u,

which is just the area of R.

Another way of finding the area of the transformed region is to find the determinant of the matrix,
which is cosh2 α− sinh2 α = 1, so the area scale factor is 1. Thus the area of the transformed region
is the same as the area of the original region.

We see that this transformation matrix “rotates” the hyperbola, in the same way that
(
cosα − sinα
sinα cosα

)
rotates a circle. This is an important idea in mathematical physics and other areas of mathematics.

STEP 3 Matrices Solutions 22

https://maths.org/step/


maths.org/step

Question 9

Show that the equations

3x+ 2y + z = a− 1,

−2x+ (a− 2)y − az = 2a,

6x+ ay + (a− 2)z = 3a− 6

have a solution, not necessarily unique, unless a = 2
3 .

Find the complete solution when a = 0 and when a = 4.

We can write the equations as Ax = b, where

A =

 3 2 1
−2 a− 2 −a
6 a a− 2

 , x =

xy
z

 , b =

 a− 1
2a

3a− 6

 .

We start by calculating the determinant of A. We can use any technique we like; we’ll use some
row operations to demonstrate how this approach can be used.

detA =

∣∣∣∣∣∣
3 2 1
−2 a− 2 −a
6 a a− 2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3 2 1
−2 a− 2 −a
4 2a− 2 −2

∣∣∣∣∣∣ r3 → r3 + r2

=

∣∣∣∣∣∣
3 2 1

3a− 2 3a− 2 0
4 2a− 2 −2

∣∣∣∣∣∣ r2 → r2 + ar1

= (3a− 2)

∣∣∣∣∣∣
3 2 1
1 1 0
4 2a− 2 −2

∣∣∣∣∣∣ factorise r2

= (3a− 2)

∣∣∣∣∣∣
3 2 1
1 1 0
10 2a+ 2 0

∣∣∣∣∣∣ r3 → r3 + 2r1

= (3a− 2)

∣∣∣∣ 1 1
10 2a+ 2

∣∣∣∣ expanding down the third column

= (3a− 2)(2a+ 2− 10)

= (3a− 2)(2a− 8)

= 2(3a− 2)(a− 4).

As there is a unique solution (namely x = A−1b) whenever detA 6= 0, there is a unique solution
for a 6= 2

3 , a 6= 4.
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When a = 2
3 , the equations become

3x+ 2y + z = −1
3 ,

−2x− 4
3y −

2
3z = 4

3 ,

6x+ 2
3y −

4
3z = −4.

For clarity, we can multiply the second and third equations by ±3
2 to clear fractions and remove

common factors, giving:

3x+ 2y + z = −1
3 ,

3x+ 2y + z = −2,

9x+ y − 2z = −6.

It is now apparent that the first two equations are inconsistent: they have no common solution.
Geometrically, they represent two distinct parallel planes.

When a = 4, the equations become

3x+ 2y + z = 3,

−2x+ 2y − 4z = 8,

6x+ 4y + 2z = 6.

Again, we take out common factors from the second and third equations:

3x+ 2y + z = 3,

x− y + 2z = −4,

3x+ 2y + z = 3.

We see that the first and third equations are identical and the left hand side of the second equation
is not a multiple of the left hand side of the other two. So geometrically, these are two identical
planes and a third non-identical plane, and there will therefore be infinitely many solutions.

We can find these solutions by eliminating z from the first two equations (second equation minus
2 times the first) to get −5x − 5y = −10, or x + y = 2. So if we let x = t, y = 2 − t, we get
z = 3 − 3x − 2y = 3 − 3t − 2(2 − t) = −1 − t, so the complete solution is all points of the form
(t, 2− t,−1− t).

Finally, in the case that a = 0, there is a unique solution. The equations become

3x+ 2y + z = −1,

−2x− 2y = 0,

6x− 2z = −6.

We could find the inverse of A in this case, but it does not seem worth the effort. We remove
common factors again to obtain

3x+ 2y + z = −1,

x+ y = 0,

3x− z = −3.

The second equation gives y = −x, so the other two become

x+ z = −1,

3x− z = −3.

Adding these gives 4x = −4, so x = −1, y = 1 and z = 0.
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Question 10

If z is the complex number x+ iy, i =
√
−1, let M(z) denote the 2× 2 matrix(

x y
−y x

)
.

Prove that

M(z + z′) = M(z) + M(z′)

and that

M(zz′) = M(z)M(z′).

We let z′ be the complex number x′ + iy′, so that M(z′) =

(
x′ y′

−y′ x′

)
. We then have

M(z + z′) = M((x+ x′) + i(y + y′))

=

(
x+ x′ y + y′

−(y + y′) x+ x′

)
M(z) + M(z′) =

(
x y
−y x

)
+

(
x′ y′

−y′ x′

)
=

(
x+ x′ y + y′

−(y + y′) x+ x′

)
M(zz′) = M((x+ iy)(x′ + iy′))

= M((xx′ − yy′) + i(xy′ + yx′))

=

(
xx′ − yy′ xy′ + yx′

−(xy′ + yx′) xx′ − yy′
)

M(z)M(z′) =

(
x y
−y x

)(
x′ y′

−y′ x′

)
=

(
xx′ − yy′ xy′ + yx′

−(xy′ + yx′) xx′ − yy′
)

Therefore M(z + z′) = M(z) + M(z′) and M(zz′) = M(z)M(z′).

In the language of abstract algebra, this (together with M(1) = I) shows that the function M gives
an isomorphism between the (ring of) complex numbers and the (ring of) 2 × 2 matrices of this
form. This idea is studied more extensively in many undergraduate mathematics courses.
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Hence, or otherwise, show that(
cos θ sin θ
− sin θ cos θ

)n
=

(
cosnθ sinnθ
− sinnθ cosnθ

)
.

We can write the left-hand side using the M function:(
cos θ sin θ
− sin θ cos θ

)n
= (M(cos θ + i sin θ))n = M((cos θ + i sin θ)n)

using the multiplicative property of M. (To be very careful, we should prove that M(zn) = (M(z))n

by induction, which is clearly true from M(zz′) = M(z)M(z′). Also, the question has not specified
that n is a positive integer; we will assume this to be the case, though the result still holds if n is
an arbitrary integer.)

Now we can use de Moivre’s theorem to write (cos θ + i sin θ)n = cosnθ + i sinnθ, so that(
cos θ sin θ
− sin θ cos θ

)n
= M(cosnθ + i sinnθ) =

(
cosnθ sinnθ
− sinnθ cosnθ

)
.

This is a potentially circular argument, for how do we prove de Moivre’s theorem? One way to do
so is by induction, using the addition formulae for sine and cosine. But how do we prove those?
One way to do so is by writing down the matrix for rotating by A and the matrix for rotating
by B; multiplying these gives the matrix for the composite transformation, which is rotating by
A+B. But now we are using de Moivre’s theorem to prove a result about rotation matrices, which
is almost where we obtained de Moivre’s theorem from in the first place! One way out of this is
to prove de Moivre’s theorem and the addition formulae using the series definitions of sine, cosine
and the exponential function ez. But that would take us too far afield here.

Hence find three real 2 × 2 matrices A such that A3 = I and a 2 × 2 matrix B such that
B2 + I = B.

If we have A = M(z), then we require A3 = I, so M(z3) = M(1). This will be satisfied if

and only if z3 = 1, and this has three solutions, z = 1, z = cos 2π
3 + i sin 2π

3 = −1
2 + i

√
3
2 and

z = cos 2π
3 − i sin 2π

3 = −1
2 − i

√
3
2 . Therefore three real matrices are(

1 0
0 1

)
;

(
−1

2

√
3
2

−
√
3
2 −1

2

)
;

(
−1

2 −
√
3
2√

3
2 −1

2

)
.

For matrix B, if we take B = M(z), then the equation becomes M(z2) + M(1) = M(z), or

M(z2 − z + 1) = M(0). We can solve z2 − z + 1 = 0 to obtain z = 1±
√
−3

2 , giving two possible
matrices B (though there may be others not of this form):(

1
2

√
3
2

−
√
3
2

1
2

)
and

(
1
2 −

√
3
2√

3
2

1
2

)
.
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Question 11

Using any method you wish, calculate the inverse A−1 of the matrix

A =

1 1 2
2 3 3
3 4 6

 .

We demonstrate how Gaussian elimination (row operations) can be used to find the inverse of a
matrix, as mentioned briefly in the notes. We start with an augmented version of A, and perform
row operations until the left side of the matrix becomes the identity. In this process, we are also
allowed to swap rows (which can be achieved through a sequence of steps involving adding multiples
of rows to other rows and multiplying a whole row by a constant).

1 1 2 1 0 0
2 3 3 0 1 0
3 4 6 0 0 1


→

1 1 2 1 0 0
0 1 −1 −2 1 0
0 1 0 −3 0 1

 (r2 → r2 − 2r1; r3 → r3 − 3r1)

→

1 1 2 1 0 0
0 1 0 −3 0 1
0 1 −1 −2 1 0

 (swap r2 and r3)

→

1 0 2 4 0 −1
0 1 0 −3 0 1
0 0 −1 1 1 −1

 (r1 → r1 − r2; r3 → r3 − r2)

→

1 0 0 6 2 −3
0 1 0 −3 0 1
0 0 −1 1 1 −1

 (r1 → r1 + 2r3)

→

1 0 0 6 2 −3
0 1 0 −3 0 1
0 0 1 −1 −1 1

 (r3 → −r3)

Hence

A−1 =

 6 2 −3
−3 0 1
−1 −1 1

 .
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Interpret geometrically in three dimensions the equations

x+ y + 2z = 4,

2x+ 3y + 3z = 8,

3x+ 4y + λz = 7 + λ

in the cases λ = 6 and λ = 5.

These three equations are the equations of three planes. They can be written as Ax = b, where
A is the above matrix in the case λ = 6, and the above matrix with the bottom right element

replaced by 5 in the case λ = 5; also, x =

xy
z

 and b =

 4
8

7 + λ

.

In the case λ = 6, we have seen that A is invertible, so the three planes meet at a single point. We
can calculate the coordinates of this point as x = A−1b:

x =

 6 2 −3
−3 0 1
−1 −1 1

 4
8
13

 =

1
1
1


so the planes meet at (1, 1, 1), and indeed this satisfies all three equations.

In the case λ = 5, we have

x+ y + 2z = 4,

2x+ 3y + 3z = 8,

3x+ 4y + 5z = 12.

It is easy to spot that the third equation is the sum of the first two equations, so if the first two
equations are satisfied, the third one will also be. We can eliminate x from the first two equations
to get y−z = 0, so y = z, and thus a general solution is y = z = t, x = 4−3t, which is a parametric
equation of a straight line. Geometrically, this means that the three planes all meet along this line,
but no two of the planes are identical.
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Question 12

Using any method you prefer, and solving the problems in any order you prefer, find

(i) the inverse of the matrix 1 2 4
3 5 7
6 8 3

 ,

(ii) the solution of the simultaneous equations

x+ 2y + 4z = 3,

3x+ 5y + 7z = 12,

6x+ 8y + 3z = 31.

For this question, we will use the adjugate matrix approach. We will calculate the inverse first,
and then use this to solve the simultaneous equations.

Writing A for the matrix in (i), the simultaneous equations become Ax = b, where x =

xy
z

 and

b =

 3
12
31

, so that x = A−1b.

We can calculate the determinant of A using the forwards and backwards diagonals approach (see
the STEP 3 Matrices Topic Notes):

detA = 1.5.3 + 2.7.6 + 4.3.8− 1.7.8− 2.3.3− 4.5.6

= 15 + 84 + 96− 56− 18− 120

= 1.

(How conveniently this matrix was chosen by the examiners!) Since the inverse matrix is 1
detA

times the adjugate matrix, the adjugate matrix adjA and the inverse matrix A−1 are the same in
this case.

The matrix of cofactors is then

+

∣∣∣∣5 7
8 3

∣∣∣∣ − ∣∣∣∣3 7
6 3

∣∣∣∣ +

∣∣∣∣3 5
6 8

∣∣∣∣
−
∣∣∣∣2 4
8 3

∣∣∣∣ +

∣∣∣∣1 4
6 3

∣∣∣∣ − ∣∣∣∣1 2
6 8

∣∣∣∣
+

∣∣∣∣2 4
5 7

∣∣∣∣ − ∣∣∣∣1 4
3 7

∣∣∣∣ +

∣∣∣∣1 2
3 5

∣∣∣∣


=

−41 33 −6
26 −21 4
−6 5 −1



Therefore the adjugate matrix and inverse are the transpose of this, namely−41 26 −6
33 −21 5
−6 4 −1

 .
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(It is certainly worth checking that for our calculated A−1, we have AA−1 = I; this will catch
calculational errors.)

Then the solution of the simultaneous equations is given by

x =

−41 26 −6
33 −21 5
−6 4 −1

 3
12
31

 =

 3
2
−1

 ,

so x = 3, y = 2, z = −1. (Again, these should be substituted into the equations to check the
solution is correct.)

The last of the three equations is replaced by

6x+ 8y + az = b,

and it is found that the first two equations together with the new third one have more than
one solution. Find a and b, and state a geometrical interpretation in three dimensions for these
equations.

If the equations have more than one solution, then geometrically we must have one of the following
scenarios:

• three identical planes, so all three equations are multiples of each other

• two identical planes and one non-parallel plane, so two equations are multiples of each other

• no parallel planes, but all three planes sharing a common line

None of these equations are multiples of each other (we only need to look at the x and y components
to see this). Therefore we must be dealing with the third situation.

Algebraically, multiple solutions implies that the equations are not linearly independent, meaning
that some equation is the sum of multiples of the other equations. The third situation requires
that each equation is the sum of multiples of the other two equations. In our case, this means that
6x+ 8y + az = b is the sum of λ times x+ 2y + 4z = 3 and µ times 3x+ 5y + 7z = 12 for some λ
and µ. So we require

λ+ 3µ = 6

2λ+ 5µ = 8

4λ+ 7µ = a

3λ+ 12µ = b;

we can easily solve the first two equations to obtain λ = −6 and µ = 4, hence a = 4 and b = 30.
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Question 13

A is a 3× 3 matrix whose elements are 0, 1 or −1 and each row and each column of A contains
exactly one non-zero element. Prove that A2, A3, . . . , An are all of the same form and deduce
that Ah = I for some positive integer h 6 48.

We are asked to prove something for a general positive integer n, so induction seems like a natural
approach. The most difficult part of this question is finding a way to express the ideas clearly.

We therefore show that if Ak has this form, then so does Ak+1. Now Ak+1 = AAk. Consider how
this multiplication works:

• The first row of Ak+1 is obtained by multiplying the first row of A by each column of Ak.
Since the first row of A has exactly one non-zero element (either 1 or −1), this will result in
the first row of Ak+1 being:

– the first/second/third row of Ak if the first/second/third element of the first row of A
is 1

– minus the first/second/third row of Ak if the first/second/third element of the first row
of A is −1

So the first row of Ak+1 will contain exactly one non-zero element, and this element will be
1 or −1.

• The second row of Ak+1 is obtained by multiplying the second row of A by each column
of Ak. As with the first row, this means that the second row will contain exactly one non-
zero element, which is again 1 or −1.

• The third row behaves in the same way.

• Thus the first row of Ak becomes the b1-th row of Ak+1, possibly multiplied by −1, where
the (1, b1)-th element of A is non-zero. The second row of Ak becomes the b2-th row of Ak+1

(again possibly multiplied by −1), where the (2, b2)-th element of A is non-zero, and similarly
for the third row.

• Since each column of A contains exactly one non-zero element, b1, b2 and b3 are distinct, so
they take the values 1, 2 and 3 in some order. This means that the rows of Ak are simply
reordered (the technical term is permuted) to obtain Ak+1, and some of them may be negated
too.

• Therefore each row of Ak+1 contains exactly one non-zero element, and each column of Ak+1

contains exactly one non-zero element. This also shows that every element of Ak+1 is 0, 1
or −1.

Therefore our induction step holds. Since A1 has the required form, we have a basis for induction,
and hence An has this form for all positive integer n.
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What follows is a standard proof technique for this type of question. It is well worth paying
attention to the structure of this argument, because it is very common in mathematics.

Now consider how many possible such matrices there are. There are 3 choices for b1 (using the
above notation), 2 choices for b2 (once b1 has been chosen), and then b3 is forced, so there are
3! = 6 choices for the positions of the non-zero terms. Each one is either positive or negative, so
there are 23 = 8 possible sign choices for each position. There are therefore 48 distinct matrices of
this form.

Then if we look at A, A2, . . . , A49, at least two of these 49 matrices must be the same. Let’s say
that Aj = Ak, where 1 6 j < k 6 49. Then as the determinant of A is non-zero (it is ±1 – see
below), Aj is invertible, so we have I = Ak(Aj)−1 = Ak−j . Since 1 6 k − j 6 48, we have found
h = k − j with Ah = I and h 6 48, as required.

In the previous paragraph, we claimed that the determinant of A is non-zero. The reason for this
is as follows. Let us write

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


Then the full expression for the determinant is the sum/difference of 6 terms:

detA = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

Each of these terms is the product of exactly one element from each row and one element from each
column of A, and all 6 such possibilities appear here. Since A has exactly one non-zero element
in each row and in each column, exactly one of these 6 terms is non-zero and the rest are zero. So
the determinant is the product of the non-zero elements of A, which is ±1.

This argument extends to n× n matrices with this form. There will be n!× 2n possible matrices,
each of which will have determinant ±1, and Ah = I for some positive integer h 6 n!× 2n.

Interpret the action of A on a vector

xy
z

 geometrically.

The precise geometric description of A will clearly depend on the exact matrix. But we can say
some general things about the geometric behaviour. Algebraically, the action of A permutes the
components of the vector and possibly negates some of them.

Geometrically, swapping two elements, say x and y, corresponds to reflecting this vector in the
plane x = y. And sending x to y, y to z and z to x corresponds to rotating it by 1

3 of a turn, so
by an angle of 2π

3 , about the line x = y = z; sending x to z, z to y and y to x corresponds to a
rotation by −2π

3 about the same line.

Negating x corresponds geometrically to reflecting the vector in the plane x = 0, and likewise for
y and z.

So the action of A is one of the identity, a reflection in x = y, a reflection in y = z, a reflection in
z = x, or a rotation of ±2π

3 about the line x = y = z, possibly followed by reflections in some or
all of the planes x = 0, y = 0 or z = 0.

STEP 3 Matrices Solutions 32

https://maths.org/step/


maths.org/step

We could, if we wished, list the behaviour of all 48 possible matrices separately. These turn out
to correspond to the so-called symmetries of a cube, that is, all possible transformations of a unit
cube centred on the origin and with edges parallel to the axes, such that the image of the cube is
the same cube. These can be described as follows:

• the identity transformation (1 transformation)

• rotation by ±π
2 about an axis passing through the centres of opposite faces (6 transformations)

• rotation by π about an axis passing through the centres of opposite faces (3 transformations)

• rotation by π about an axis passing through the midpoints of opposite edges (6 transforma-
tions)

• rotation by ±2π
3 about an axis passing through opposite corners (8 transformations)

• reflection about a plane through the centre of the cube parallel to a face (3 transformations)

• reflection about a plane through the centre of the cube passing through two opposite edges
(6 transformations)

• reflection about the centre of the cube (1 transformation)

• rotation by ±π
2 about an axis passing through the centres of opposite faces followed by a

reflection in the plane through the centre of the cube perpendicular to the rotation axis
(6 transformations)

• rotation by π about an axis passing through the centres of opposite faces followed by a
reflection in the plane through the centre of the cube perpendicular to the rotation axis: this
is actually the same as a reflection about the centre of the cube, so has already been counted

• rotation by ±2π
3 about an axis passing through opposite corners followed by a reflection in a

plane through the centre of the cube parallel to a face (8 distinct transformations)

Any other composition of reflections and/or rotations is equivalent to one of the 48 in this list.
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Question 14

Find all possible solutions to

A

xy
z

 =

2
1
k

 (i),

where

A =

1 2 −1
2 1 1
5 4 1

 ,

stating explicitly the value of k that gives these solutions.

We approach this question using Gaussian elimination.

We write the equation (i) as an augmented matrix, and then use row operations:1 2 −1 2
2 1 1 1
5 4 1 k

→
1 2 −1 2

0 −3 3 −3
0 −6 6 k − 10

 r2 → r2 − 2r1; r3 → r3 − 5r1

→

1 2 −1 2
0 −3 3 −3
0 0 0 k − 4

 r3 → r3 − 2r2

→

1 2 −1 2
0 1 −1 1
0 0 0 k − 4

 r2 → −1
3r2

For the final row to be consistent (it reads: 0x+0y+0z = k−4), we require k−4 = 0, so k = 4. In
this case, the second row then gives y− z = 1, so y = z + 1, and the first row gives x+ 2y− z = 2,
so x = −z. Thus all possible solutions are given by x = t, y = 1− t, z = −t for arbitrary t.

The equations

A

xy
z

 =

2
1
4

 and A

xy
z

 =

2
1
3


may each be regarded as the equations of three planes; give a geometrical interpretation of your
solution of equation (i) in terms of these sets of planes.

No pair of planes involved in either case is parallel, as no two rows of A are multiples of each other.
So in the first case, the three planes all share a common line. In the second case, where there are
no solutions, each pair of planes meets in a distinct line, and the three lines are parallel to each
other, forming an infinite triangular prism.

Thinking about the original equations, the first two planes (given by the first two rows of the matrix
equation) are fixed, whereas the third plane is translated as the value of k changes.
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Write down the equation of the line, L, of intersection of the planes

x+ 2y − z = 2 and 2x+ y + z = 1.

From our earlier answers, this is the line parametrised by x = t, y = 1− t, z = −t. In vector form,
we could write this line as r = j + t(i− j− k).

Find the equation of the plane through (0, 1, 0) perpendicular to L and the coordinates of the
points where this plane intersects the lines of intersection of

x+ 2y − z = 2 and 5x+ 4y + z = 3

and
2x+ y + z = 1 and 5x+ 4y + z = 3.

The plane has vector equation r.n = j.n where n is a vector normal to the plane; we can take
n = i− j− k (the direction vector of L), so the plane has vector equation (i− j− k).r = −1, and
hence cartesian equation x− y − z = −1.

To find the points where this plane intersects the lines of intersection of these pairs of planes, we
will have to solve three simultaneous equations once more.

More efficiently, we can solve the pair of simultaneous equations x−y−z = −1 and 5x+4y+z = 3
to obtain a line, and the find the points of intersection of this line with the other two planes.

We can solve

x− y − z = −1

5x+ 4y + z = 3

by adding the equations to obtain 6x+ 3y = 2, so x = t, y = 1
3(2− 6t), z = x− y + 1 = 3t+ 1

3 .

Substituting this into x+ 2y − z = 2 gives

t+ 2
3(2− 6t)− (3t+ 1

3) = 2

and so −6t = 1, hence t = −1
6 and the first intersection point is (−1

6 , 1,−
1
6).

Substituting this into 2x+ y + z = 1 gives

2t+ 1
3(2− 6t) + (3t+ 1

3) = 1

and so 3t = 0, hence t = 0 and the second intersection point is (0, 23 ,
1
3).
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Question 15

(i) Given M =

(
k 1
0 k

)
, calculate M2 and M3.

Suggest a form for Mn and confirm your suggestion, using the method of proof by induction.

M2 =

(
k2 2k
0 k2

)
M3 =

(
k3 3k2

0 k3

)

Following this pattern, we could suggest that

Mn =

(
kn nkn−1

0 kn

)

We see from our calculations that this holds for n = 1, 2 and 3. Assuming that it holds for n = r,
then we have

Mr+1 =

(
k 1
0 k

)(
kr rkr−1

0 kr

)
=

(
kr+1 (r + 1)kr

0 kr+1

)
which shows that it holds for n = r + 1. Therefore the suggestion holds for all positive integer n
by induction.

(ii) Prove that, for any n× n matrices A and B,

AB = BA

if and only if (A− kI)(B− kI) = (B− kI)(A− kI) for all values of the real number k.

This question asks us to prove that something is true if and only if something else is true. So we
have to prove both directions.

We start by expanding and simplifying the second equation. We have, for any specific value of k,

(A− kI)(B− kI) = (B− kI)(A− kI)
⇐⇒ AB− kA− kB + k2I = BA− kA− kB + k2I

⇐⇒ AB = BA.

So if (A − kI)(B − kI) = (B − kI)(A − kI) for any value of k, then AB = BA, so certainly if
(A−kI)(B−kI) = (B−kI)(A−kI) for all values of k, then AB = BA. Conversely, if AB = BA,
then for each value of k, (A− kI)(B− kI) = (B− kI)(A− kI), so this holds for all values of k.
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(iii) Prove that, for any n× n matrices A and B, (AB)T = BTAT, where AT is the transpose
of A.

We will actually prove this result for any matrices A and B which are conformable for multiplication.
The specific case of n× n matrices follows immediately. We will need an expression for the (i, j)th
element of the product of two matrices. Since we will be multiplying different matrices, we will use
matrices C and D for this purpose, where we assume them to be conformable for multiplication.

The element (CD)ij is the result of multiplying the ith row of C by the jth column of D, so we
can write

(CD)ij =
∑
k

cikdkj

where the sum is from k = 1 to the number of columns of C, which equals the number of rows
of D. (In the particular case of this question, the sum would be

∑n
k=1.)

Now the (i, j)th element of (AB)T is the (j, i)th element of AB, so we have(
(AB)T

)
ij

= (AB)ji =
∑
k

ajkbki.

(Note the order of i and j in the final sum, because we are looking at the (j, i)th element of AB.)

Likewise, the (i, j)th element of BTAT is

(BTAT)ij =
∑
k

(BT)ik(A
T)kj =

∑
k

bkiajk

since the (r, s)th element of AT is the (s, r)th element of A, which is asr.

Comparing the expressions for the (i, j)th element of (AB)T and BTAT, we see that they are
equal, and hence (AB)T = BTAT as required.

In the general case, we actually need to do one extra thing, which is to check that all the sums are
over the same indices, and that these two final matrices have the same dimensions as each other.
If A is an m× p matrix and B is a p× n matrix, then the sum in the expression for

(
(AB)T

)
ij

is

from k = 1 to p, and as AB is an m× n matrix, (AB)T is an n×m matrix. Now AT is a p×m
matrix and BT is an n × p matrix, so BTAT is an n ×m matrix, and the sums in the expression
for (BTAT)ij are from k = 1 to p. So everything works.
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(iv) Prove that, if A and B are n × n symmetric matrices, then AB is symmetric if and only
if AB = BA.

We recall that a matrix is called symmetric if it equals its transpose. This is another if and only if
question, so we must be careful to prove the result in both directions.

We are given that A and B are symmetric.

If AB is symmetric, then

AB = (AB)T the given assumption

= BTAT using part (iii)

= BA as A and B are symmetric

so AB = BA.

Conversely, if AB = BA, we have

(AB)T = BTAT using part (iii)

= BA as A and B are symmetric

= AB the given assumption

so AB is symmetric.
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Question 16

Let I =

(
1 0
0 1

)
and J =

(
0 −1
1 0

)
.

(i) The complex number a + ib is represented by the matrix aI + bJ. Show that if w and z
are two complex numbers represented by the matrices P and Q respectively, then w+ z is
represented by P + Q and wz is represented by PQ.

See the solution to the first part of question 10; it is identical except that J has been replaced by
−J.

There is actually something quite significant about this: there is no way to distinguish between the
two square roots of −1, as long as we are consistent about our choice. So we could replace every
occurrence of i by −i throughout a piece of mathematics, and it would still be perfectly correct.

(ii) The matrices A and B are

(
2 −1
1 2

)
and

(
3 −1
1 3

)
respectively.

Express A, B, B−1 and AB−1 in the form aI + bJ.

Write down the complex numbers represented by A, B and AB in the form reiθ. Hence,
or otherwise, show that

arctan(12) + arctan(13) = 1
4π.

We have A = 2I + J and B = 3I + J. We can then calculate

B−1 =
1

10

(
3 1
−1 3

)
so

AB−1 =
1

10

(
2 −1
1 2

)(
3 1
−1 3

)
=

1

10

(
7 −1
1 7

)
so B−1 = 1

10(3I− J) and AB−1 = 1
10(7I + J).

If the complex number represented by A is w, then |w| =
√

22 + 11 =
√

5, and argw = arctan(12),

so w =
√

5 eiθ, where θ = arctan(12).

Likewise, if the complex number represented by B is z, then z =
√

10 eiφ, where φ = arctan(13).

Finally, the complex number u represented by AB is the product of these, so u = wz = 5
√

2 eiψ,
where ψ = arctan(12) + arctan(13).

We can also calculate AB explicitly:

AB =

(
2 −1
1 2

)(
3 −1
1 3

)
=

(
5 −5
5 5

)
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so AB = 5(I + J); since arctan(1) = 1
4π, this matrix represents the complex number 5

√
2 eiπ/4.

Comparing these expressions for the complex number represented by AB, we find that

arctan(12) + arctan(13) = 1
4π.
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Question 17

Show that a matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where a11 6= 0 and a11a22−a12a21 6= 0, may be decomposed into the product of a lower triangular
form matrix L and an upper triangular form matrix U such that A = LU where

L =

a11 0 0
a21 l 0
a31 m n

 and U =

1 p q
0 1 r
0 0 1

 .

If we multiply out LU, we get

LU =

a11 pa11 qa11
a21 pa21 + l qa21 + lr
a31 pa31 +m qa31 +mr + n

 .

Comparing this to A, we can choose values for l, m, n, p, q and r so that A = LU as follows:

p =
a12
a11

q =
a13
a11

l = a22 − pa21
m = a32 − pa31

r =
a23 − qa21

l
n = a33 − qa31 −mr.

Note that since

l = a22 − pa21 = a22 −
a12a21
a11

=
a11a22 − a12a21

a11
6= 0,

the formula for r does not involve division by zero.
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A system of simultaneous linear equations, Ax = c, may be solved by writing the equations as
LUx = c and letting Ux = u. The vector u is determined from Lu = c and the solution x is
then found from Ux = u. Since both L and U are triangular, these two sets of equations can
be solved directly by back substitution.

Use this method to solve

x+ y − z = 2,

3x+ 2y + 5z = 1,

4x− y + 2z = 0.

We have, in this case,

A =

1 1 −1
3 2 5
4 −1 2

 ; c =

2
1
0


Using the above calculations, we obtain

L =

1 0 0
3 −1 0
4 −5 −34

 and U =

1 1 −1
0 1 −8
0 0 1

 .

(It is definitely worth checking that A = LU at this point, to ensure that our calculations are
correct.)

We now solve Lu = c, so 1 0 0
3 −1 0
4 −5 −34

uv
w

 =

2
1
0

 .

We use back substitution: the first row gives u = 2, then the second row gives 3u−v = 1, so v = 5,
and finally 4u− 5v − 34w = 0, giving w = −1

2 .

We finally solve Ux = u, so 1 1 −1
0 1 −8
0 0 1

xy
z

 =

 2
5
−1

2

 .

Using back substitution, we have z = −1
2 , y − 8z = 5 so y = 1, and x + y − z = 2, so x = 1

2 , and
we have solved our equations.

It is wise to substitute this solution back into the original equations as a check.
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