STEP Support Programme

STEP II Mechanics Questions: Solutions

These are not fully worked solutions - you need to fill in some gaps. It is a good idea to look at the "Hints" document before this one.

1 (i) Divide the lamina into a rectangle and a triangle. Let the Centre of Mass lie on a line a distance k from $O Z$.

The CoM of the triangle is a horizontal distance 3 cm from the red line, so a distance $12-k$ from the CoM.
The CoM of the rectangle is a distance of $k-4.5$ from the CoM.
The triangle has twice the area so twice the mass - say the rectangle has mass $2 M$ and the triangle has mass M. Alternatively, you could use a mass density ρ instead of a mass
Taking moments, $2 M g(k-4.5)=M g(12-k)$ which gives $k=7$ as required.
(ii) First, work out the areas of each part of the tank:

Front $41 d$, Back $40 d$, Base $9 d$, each side 540.
As the sheet metal has constant density, we can choose units such that the mass per unit area is 1 , and use these values as the mass in our moments calculations.
Let the centre of mass be a distance q from the back of the tank.
Taking moments about the centre of mass:
$40 d q+9 d(q-4.5)=540.2 .(7-q)+41 d(13.5-q)$ (back, base, 2 sides and front).
This solves to give

$$
q=\frac{3(140+11 d)}{5(12+d)} \mathrm{cm}
$$

as required.
When $d=20, q=\frac{27}{4}$, the area of the sheet metal is 2880 and the volume of the tank is 10800 . The ratio of the mass of the metal to the mass of the liquid is thus 2880: 10800k which simplifies to $4: 15 k$.
From part (i), the mass of the liquid will act at a point 7 cm from the back of the tank, and from part (ii) and given $d=20$, the mass of the metal will act at a point $\frac{27}{4}$ from the back of the tank.

Let p be the distance of the Centre of Mass of the filled tank from the back of the tank. Taking moments, $4\left(p-\frac{27}{4}=15 k(7-p)\right.$ which simplifies to give

$$
p=\frac{3(35 k+9)}{4+15 k}
$$

At this point, it's a good idea to do a quick sanity check - what happens when the liquid is very much heavier than the tank? (i.e. k is very large.) p is then approximately 7, which is what we would expect as the CoM of the liquid is a distance of 7 from the back of the tank.
(i) Start, as with virtually all mechanics questions, by drawing a nice clear diagram showing the rod and the forces acting:

As the rod is held in equilibrium, we know it neither slips nor rotates. We can take moments, and resolve forces horizontally and vertically. Taking moments,

$$
2 l W \cos \theta=3 l T \sin \beta
$$

so

$$
T=\frac{2 W \cos \theta}{3 \sin \beta}
$$

Resolving horizontally:

$$
R \cos (\alpha+\theta)=T \cos (\beta-\theta)
$$

Substituting in for T :

$$
R=\frac{2 W \cos \theta \cos (\beta-\theta)}{3 \sin \beta \cos (\alpha+\theta)}
$$

Resolving vertically:

$$
R \sin (\alpha+\theta)+T \sin (\beta-\theta)=W)
$$

Substituting for R and T :

$$
\frac{2 W \cos \theta \cos (\beta-\theta) \sin (\alpha+\theta)}{3 \sin \beta \cos (\alpha+\theta)}+\frac{2 W \cos \theta \sin (\beta-\theta)}{3 \sin \beta}=W
$$

Cancelling the Ws, using the relevant formulae to expand the trig functions, and taking EXTREME CARE with your $\sin , \cos , \alpha, \beta$ and θ terms leads to the required answer.
(ii) Given that $\theta=30^{\circ}$ and $\beta=45^{\circ}$,

$$
\cot \alpha=3 \tan 30+2 \cot 45=\sqrt{3}+2
$$

In order to show that $\alpha=15^{\circ}$, it is sufficient to show that $\tan 15^{\circ}=\frac{1}{\sqrt{3}+2}$, which can be done by considering $\tan \left(60^{\circ}-45^{\circ}\right)$

3 (i) As $\theta=\arctan \frac{1}{2}, \cos \theta=\frac{2}{\sqrt{5}}$ and $\sin \theta=\frac{1}{\sqrt{5}}$.
Vertical distance travelled at time t:

$$
\begin{aligned}
s & =25 \sin \theta t-\frac{1}{2} g t^{2} \\
& =\frac{25 t}{\sqrt{5}}-5 t^{2}
\end{aligned}
$$

Horizontally, $s=25 \cos \theta t=10 \sqrt{5} t$, in a direction 60° clockwise of the East-West line BO.

We are taking the origin to be at O, so the initial position of the particle is 50 i . Thus, the position vector relative to O at time t is

$$
(50-5 \sqrt{5} t) \mathbf{i}+5 \sqrt{15} t \mathbf{j}+(5 t(\sqrt{5}-t)) \mathbf{k}
$$

Taking out a factor of 5 and then finding the magnitude gives:

$$
5 \sqrt{100-20 \sqrt{5} t+5 t^{2}+15 t^{2}+5 t^{2}-2 \sqrt{5} t^{3}+t^{4}}
$$

and we can square the given expression to show the required result.
The distance is shortest when $t^{2}-\sqrt{5} t+10$ is at a minimum. Completing the square gives $t=\frac{\sqrt{5}}{2}$ at P.
Substituting this value of t into our formula for the position vector gives

$$
O P=\frac{75}{2} \mathbf{i}+\frac{25 \sqrt{3}}{2} \mathbf{j}+\frac{25}{4} \mathbf{k}
$$

This vector is at an angle of 30° to $O B$ so the bearing is 060 .
(ii) The particle reaches its maximum height when the \mathbf{k} component is a maximum, so we need to maximise $5 \sqrt{5} t-5 t^{2}$. This has a maximum at $t=\frac{\sqrt{5}}{2}$ which is when the particle is at P .
(iii) It takes $\frac{1}{8}$ seconds for the bullet to reach P. In this time, the particle has travelled a further $\frac{10 \sqrt{5}}{8}$ metres horizontally, and just $\frac{5}{64}$ metres vertically.

4 We will use conservation of momentum and Newton's law of restitution.
Let v_{a} and v_{b} be the velocities of A and B after the collision.
Relative speed before the collision: $2 u--u=3 u$
Relative speed after the collision: $v_{b}-v_{a}$
So by Newton's Law of Restitution, $e=\frac{v_{b}-v_{a}}{3 u}$.
Conservation of momentum: $2 m \cdot 2 u-m u=2 m v_{a}+m v_{b}$ so $3 u=2 v_{a}+v_{b}$.
Solving simultaneously gives $v_{a}=u(1-e)$ and $v_{b}=u(2 e+1)$.

Now let q_{b} be the velocity of B after its collision with the wall.
Thus $q_{b}=-f v_{b}=-f u(2 e+1)$.
Then there is a second collision with A which has initial velocity $v_{a}=u(1-e)$.
Let w_{a} and w_{b} be the velocities after the second collision. Using momentum and restitution again:

$$
\begin{gathered}
w_{b}-w_{a}=e\left(v_{a}-q_{b}\right) \\
2 m w_{a}+m w_{b}=2 m v_{a}+m q_{b}
\end{gathered}
$$

Eliminating w_{a} gives

$$
3 w_{b}=2(e+1) v_{a}+(1-2 e) q_{b}
$$

Substituting in for v_{a} and q_{b} gives

$$
w_{b}=\frac{1}{3}\left(2 u\left(1-e^{2}\right)+f u\left(4 e^{2}-1\right)\right.
$$

which can be rearranged to give the required result.

We are required to show that B moves towards the wall for all value of e and f, so we need to show that $\frac{2}{3}\left(1-e^{2}\right)-\frac{1}{3}\left(1-4 e^{2}\right) f>0$.
Consider the case $e=\frac{1}{2}$. Then the expression becomes $\frac{2}{3} \frac{3}{4}$ which is greater than 0 .
For $e<\frac{1}{2}, 1-e^{2}>\frac{3}{4}$ and as $\left(1-4 e^{2}\right)$ and f are both less than 1 , the expression is greater than 0 . When $e>\frac{1}{2}, 1-4 e^{2}$ is negative (and $1-e^{2}$ is positive) so the expression is positive.

