STEP Support Programme

STEP II Mechanics Questions

(i) A uniform lamina $O X Y Z$ is in the shape of the trapezium shown in the diagram. It is right-angled at O and Z, and $O X$ is parallel to $Y Z$. The lengths of the sides are given by $O X=9 \mathrm{~cm}, X Y=41 \mathrm{~cm}, Y Z=18 \mathrm{~cm}$ and $Z O=40 \mathrm{~cm}$. Show that its centre of mass is a distance 7 cm from the edge $O Z$.

(ii) The diagram shows a tank with no lid made of thin sheet metal. The base OXUT, the back $O T W Z$ and the front $X U V Y$ are rectangular, and each end is a trapezium as in part (i). The width of the tank is $d \mathrm{~cm}$.

Show that the centre of mass of the tank, when empty, is a distance

$$
\frac{3(140+11 d)}{5(12+d)} \mathrm{cm}
$$

from the back of the tank.
The tank is then filled with a liquid. The mass per unit volume of this liquid is k times the mass per unit area of the sheet metal. In the case $d=20$, find an expression for the distance of the centre of mass of the filled tank from the back of the tank.
$2 \quad 2010$ S2 Q11
A uniform rod $A B$ of length $4 L$ and weight W is inclined at an angle θ to the horizontal. Its lower end A rests on a fixed support and the rod is held in equilibrium by a string attached to the rod at a point C which is $3 L$ from A. The reaction of the support on the rod acts in a direction α to $A C$ and the string is inclined at an angle β to $C A$. Show that

$$
\cot \alpha=3 \tan \theta+2 \cot \beta .
$$

Given that $\theta=30^{\circ}$ and $\beta=45^{\circ}$, show that $\alpha=15^{\circ}$.
$3 \quad 2007$ S2 Q11
In this question take the acceleration due to gravity to be $10 \mathrm{~m} \mathrm{~s}^{-2}$ and neglect air resistance.
The point O lies in a horizontal field. The point B lies 50 m east of O. A particle is projected from B at speed $25 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle $\arctan \frac{1}{2}$ above the horizontal and in a direction that makes an angle 60° with $O B$; it passes to the north of O.
(i) Taking unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} in the directions east, north and vertically upwards, respectively, find the position vector of the particle relative to O at time t seconds after the particle was projected, and show that its distance from O is

$$
5\left(t^{2}-\sqrt{5} t+10\right) \mathrm{m}
$$

When this distance is shortest, the particle is at point P. Find the position vector of P and its horizontal bearing from O.
(ii) Show that the particle reaches its maximum height at P.
(iii) When the particle is at P, a marksman fires a bullet from O directly at P. The initial speed of the bullet is $350 \mathrm{~ms}^{-1}$. Ignoring the effect of gravity on the bullet show that, when it passes through P, the distance between P and the particle is approximately 3 m .
$4 \quad 2011$ S2 Q9
Two particles, A of mass $2 m$ and B of mass m, are moving towards each other in a straight line on a smooth horizontal plane, with speeds $2 u$ and u respectively. They collide directly. Given that the coefficient of restitution between the particles is e, where $0<e \leqslant 1$, determine the speeds of the particles after the collision.
After the collision, B collides directly with a smooth vertical wall, rebounding and then colliding directly with A for a second time. The coefficient of restitution between B and the wall is f, where $0<f \leqslant 1$. Show that the velocity of B after its second collision with A is

$$
\frac{2}{3}\left(1-e^{2}\right) u-\frac{1}{3}\left(1-4 e^{2}\right) f u
$$

towards the wall and that B moves towards (not away from) the wall for all values of e and f.

