

# **STEP Support Programme**

## **STEP 3 Vectors Questions**

### 1 SPECIMEN S2 Q9

(i) Let **a** and **b** be given vectors with  $\mathbf{b} \neq \mathbf{0}$ , and let **x** be a position vector. Find the condition for the sphere  $|\mathbf{x}| = R$ , where R > 0, and the plane  $(\mathbf{x} - \mathbf{a}) \cdot \mathbf{b} = 0$  to intersect.

When this condition is satisfied, find the radius and the position vector of the centre of the circle in which the plane and sphere intersect.

(ii) Let c be a given vector, with  $\mathbf{c} \neq \mathbf{0}$ . The vector  $\mathbf{x}'$  is related to the vector  $\mathbf{x}$  by

$$\mathbf{x}' = \mathbf{x} - \frac{2(\mathbf{x} \cdot \mathbf{c})\mathbf{c}}{|\mathbf{c}|^2}.$$

Interpret this relation geometrically.

#### 2 92 S2 Q9

Let  $\mathbf{a}, \mathbf{b}$  and  $\mathbf{c}$  be the position vectors of points A, B and C in three-dimensional space. Suppose that A, B, C and the origin O are not all in the same plane. Describe the locus of the point whose position vector  $\mathbf{r}$  is given by

$$\mathbf{r} = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c},$$

where  $\lambda$  and  $\mu$  are scalar parameters. By writing this equation in the form  $\mathbf{r} \cdot \mathbf{n} = p$  for a suitable vector  $\mathbf{n}$  and scalar p, show that

$$-(\lambda + \mu)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \lambda \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) + \mu \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = 0$$

for all scalars  $\lambda, \mu$ .

Deduce that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}).$$

Say briefly what happens if A, B, C and O are all in the same plane.





#### 3 93 S2 Q4

Two non-parallel lines in 3-dimensional space are given by  $\mathbf{r} = \mathbf{p}_1 + t_1 \mathbf{m}_1$  and  $\mathbf{r} = \mathbf{p}_2 + t_2 \mathbf{m}_2$ respectively, where  $\mathbf{m}_1$  and  $\mathbf{m}_2$  are unit vectors. Explain by means of a sketch why the shortest distance between the two lines is

$$\frac{|(\mathbf{p}_1 - \mathbf{p}_2) \cdot (\mathbf{m}_1 \times \mathbf{m}_2)|}{|(\mathbf{m}_1 \times \mathbf{m}_2)|}.$$

(i) Find the shortest distance between the lines in the case

$$\mathbf{p}_1 = (2, 1, -1)$$
  $\mathbf{p}_2 = (1, 0, -2)$   $\mathbf{m}_1 = \frac{1}{5}(4, 3, 0)$   $\mathbf{m}_2 = \frac{1}{\sqrt{10}}(0, -3, 1).$ 

(ii) Two aircraft,  $A_1$  and  $A_2$ , are flying in the directions given by the unit vectors  $\mathbf{m}_1$  and  $\mathbf{m}_2$  at constant speeds  $v_1$  and  $v_2$ . At time t = 0 they pass the points  $\mathbf{p}_1$  and  $\mathbf{p}_2$ , respectively. If d is the shortest distance between the two aircraft during the flight, show that

$$d^{2} = \frac{|\mathbf{p}_{1} - \mathbf{p}_{2}|^{2} |v_{1}\mathbf{m}_{1} - v_{2}\mathbf{m}_{2}|^{2} - [(\mathbf{p}_{1} - \mathbf{p}_{2}) \cdot (v_{1}\mathbf{m}_{1} - v_{2}\mathbf{m}_{2})]^{2}}{|v_{1}\mathbf{m}_{1} - v_{2}\mathbf{m}_{2}|^{2}}.$$

(iii) Suppose that  $v_1$  is fixed. The pilot of  $A_2$  has chosen  $v_2$  so that  $A_2$  comes as close as possible to  $A_1$ . How close is that, if  $\mathbf{p}_1, \mathbf{p}_2, \mathbf{m}_1$  and  $\mathbf{m}_2$  are as in (i)?

#### 4 95 S3 Q8

A plane  $\pi$  in 3-dimensional space is given by the vector equation  $\mathbf{r} \cdot \mathbf{n} = p$ , where  $\mathbf{n}$  is a unit vector and p is a non-negative real number. If  $\mathbf{x}$  is the position vector of a general point X, find the equation of the normal to  $\pi$  through X and the perpendicular distance of X from  $\pi$ .

The unit circles  $C_i$ , i = 1, 2, with centres  $\mathbf{r}_i$ , lie in the planes  $\pi_i$  given by  $\mathbf{r} \cdot \mathbf{n}_i = p_i$ , where the  $\mathbf{n}_i$  are unit vectors, and  $p_i$  are non-negative real numbers. Prove that there is a sphere whose surface contains both circles only if there is a real number  $\lambda$  such that

$$\mathbf{r}_1 + \lambda \mathbf{n}_1 = \mathbf{r}_2 \pm \lambda \mathbf{n}_2.$$

Hence, or otherwise, deduce the necessary conditions that

$$(\mathbf{r}_1 - \mathbf{r}_2) \cdot (\mathbf{n}_1 \times \mathbf{n}_2) = 0$$

and that

$$(p_1 - \mathbf{n}_1 \cdot \mathbf{r}_2)^2 = (p_2 - \mathbf{n}_2 \cdot \mathbf{r}_1)^2.$$

Interpret each of these two conditions geometrically.

