

STEP Support Programme

STEP 2 Miscellaneous Questions: Solutions

- **1** The first 10 cubes are 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000.
 - (i) Substituting y = k x gives:

$$x^{3} + (k - x)^{3} = kz^{3}$$

$$x^{3} + k^{3} - 3k^{2}x + 3kx^{2} - x^{3} = kz^{3}$$

$$k^{2} - 3kx + 3x^{2} = z^{3} \quad \text{since } k > 0.$$

Note that we need to state something like $k \neq 0$ before we divide by k. We then have:

$$\frac{4z^3 - k^2}{3} = \frac{4(k^2 - 3kx + 3x^2) - k^3}{3}$$
$$= \frac{3k^2 - 12kx + 12x^2}{3}$$
$$= k^2 - 4kx + 4x^2$$
$$= (k - 2x)^2.$$

You can if you like use k = y + x to re-write the last line as $(y - x)^2$.

A perfect square is greater than or equal to 0, so we have $4z^3 - k^2 \ge 0 \implies z^3 \ge \frac{1}{4}k^2$. For the other part of the inequality use:

$$z^{3} = k^{2} - 3kx + 3x^{2}$$

= $k^{2} - 3x(k - x)$
= $k^{2} - 3xy$

and as x, y > 0 we have $z^3 < k^2$. Therefore we have $\frac{1}{4}k^2 \leq z^3 < k^2$.

When k = 20 we have $100 \leq z^3 < 400$, so z must be 5, 6 or 7 (this is why you were asked to work out the first few cubes!). Testing each of these in $\frac{4z^3 - k}{3}$ shows that only z = 7 results in a perfect square. Using $\frac{4z^3 - k}{3} = 18^2 = (y - x)^2$ and x + y = k = 20, and assuming WLOG¹ that $y \geq x$, we can solve the simultaneous equations to get x = 1, y = 19. You can then check that $1^3 + 19^3 = 20 \times 7^3$ if you wish.

¹Without Loss Of Generality

(ii) Follow the same method as part (i)!

Substituting $y = z^2 - x$ gives:

$$x^{3} + (z^{2} - x)^{3} = kz^{3}$$

$$x^{3} + z^{6} - 3z^{4}x + 3z^{2}x^{2} - x^{3} = kz^{3}$$

$$z^{4} - 3z^{2}x + 3x^{2} = kz \quad \text{since } z > 0.$$

We are then looking for something that will give us a perfect square. Comparison with part (i) leads us to:

$$\frac{4kz - z^4}{3} = \frac{4(z^4 - 3z^2x + 3x^2) - z^4}{3}$$
$$= z^4 - 4z^2x + 4x^2$$
$$= (z^2 - 2x)^2$$
$$= (y - x)^2.$$

We then have $4kz - z^4 \ge 0 \implies z^3 \le 4k$ (since z > 0 we can divide by z without changing the inequality direction).

We also have:

$$kz = z4 - 3z2x + 3x2$$
$$= z4 - 3x(z2 - x)$$
$$= z4 - 3xy$$

and as x, y > 0 we have $kz < z^4 \implies k < z^3$. Hence we have $k < z^3 \leq 4k$. With k = 19 this gives $19 < z^3 \leq 76$ and so z = 3 or 4. Both of these give perfect squares for $\frac{4kz - z^4}{3} = (y - x)^2$. z = 3 gives $x + y = z^2 = 9$ and $(y - x)^2 = 49$, so y = 8 and x = 1. z = 4 gives $x + y = z^2 = 16$ and $(y - x)^2 = 16$, so y = 10 and x = 6.

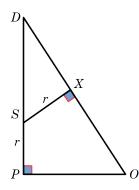
Again, you can check that these solve $x^3 + y^3 = kz^3$.

- 2 It is helpful to define a coordinate system for the tetrahedron. Let the line AB be on the x-axis so that the midpoint of AB is at the origin. This means that we have $A = \left(-\frac{1}{2}, 0, 0\right)$ and $B = \left(\frac{1}{2}, 0, 0\right)$. Using Pythagoras' theorem in $\triangle AOC$ gives $C = \left(0, \frac{\sqrt{3}}{2}, 0\right)$.
 - (i) The *centroid* of $\triangle ABC$ is a third of the distance from the centre of AB to C which gives $P = \left(0, \frac{\sqrt{3}}{6}, 0\right)$. You can the use Pythagoras' theorem to find lengths PA and PD:

$$PA^{2} = \frac{1}{4} + \frac{3}{36} = \frac{1}{3}$$
$$PD^{2} = 1 - \frac{1}{3} = \frac{2}{3}$$

and hence $PD = \sqrt{\frac{2}{3}}$.

- (ii) The angle between two adjacent faces is given by, e.g., $\angle DOC = \angle DOP$. Using the right-angled triangle $\triangle DOP$ gives $\cos(\angle DOP) = \frac{\frac{1}{6}\sqrt{3}}{\frac{1}{2}\sqrt{3}} = \frac{1}{3}$.
- (iii) The centre of the sphere, S, must lie on the line DP by symmetry. Let X be where the sphere meets the face ABD.

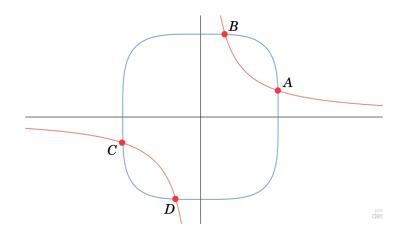


We know that $OP = OX = \frac{\sqrt{3}}{6}$, $OD = \frac{\sqrt{3}}{2}$ and $DP = \frac{\sqrt{6}}{3}$. Using the right-angled triangle $\triangle DXS$ we have:

$$DS^{2} = XS^{2} + XD^{2}$$
$$\left(\frac{\sqrt{6}}{3} - r\right)^{2} = r^{2} + \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6}\right)^{2}$$
$$\frac{6}{9} - \frac{2\sqrt{6}}{3}r + r^{2} = r^{2} + \frac{1}{3}$$
$$\frac{2\sqrt{6}}{3}r = \frac{1}{3}$$
$$r = \frac{1}{2\sqrt{6}} = \frac{\sqrt{6}}{12}$$

3 The curve xy = v is symmetric in y = x (which we can see as if we interchange x and y we get the same curve) and y = -x (which we can see by using x' = -y and y' = -x).

The curve $x^4 + y^4 = u$ is symmetric in y = x, y = -x, the x-axis (which can be seen by substituting y' = -y) and the y-axis (substitute x' = -x).



If $A = (\alpha, \beta)$ then $B = (\beta, \alpha)$, $C = (-\alpha, -\beta)$ and $D = (-\beta, -\alpha)$.

To show that ABCD is a quadrilateral, you can show that AB is perpendicular to BC. We have:

$$m_{AB} \times m_{BC} = \frac{\beta - \alpha}{\alpha - \beta} \times \frac{\alpha + \beta}{\beta + \alpha} = -1.$$

Therefore AB and BC are perpendicular. You can then use the same technique to show that all of the four sides are perpendicular, or you can use symmetry in y = x and y = -x to show this.

To find the area:

$$AB^{2} = (\alpha - \beta)^{2} + (\beta - \alpha)^{2} = 2(\alpha - \beta)^{2}$$
$$BC^{2} = (\beta + \alpha)^{2} + (\alpha + \beta)^{2} = 2(\alpha + \beta)^{2}.$$

Remembering that $\alpha > \beta$ the area is:

$$AB \times BC = \sqrt{2}(\alpha - \beta) \times \sqrt{2}(\alpha + \beta) = 2(\alpha^2 - \beta^2).$$

The question asks us for the area in terms of u and v. Since α and β satisfy the equations of the curves we have $\alpha^4 + \beta^4 = u$ and $\alpha\beta = v$.

Considering $(\alpha^2 - \beta^2)^2$ gives us:

$$(\alpha^2 - \beta^2)^2 = \alpha^4 - 2\alpha^2\beta^2 + \beta^4$$
$$= \alpha^4 + \beta^4 - 2(\alpha\beta)^2$$
$$= u - 2v^2$$

So the area is $2\sqrt{u-2v^2}$.

Then for u = 81 and v = 4 the area is $2\sqrt{81 - 32} = 2\sqrt{49} = 14$.

UNIVERSITY OF

4 We can deduce that

$$p(x) - 1 = (x - 1)^5 \times q(x)$$
 (*)

where q(x) is a quartic.

- (i) Using (*) we have $p(1) 1 = (1 1)^5 \times q(1)$, so $p(1) 1 = 0 \implies p(1) = 1$.
- (ii) Differentiating (*) gives:

$$p'(x) = 5(x-1)^4 \times q(x) + (x-1)^5 \times q'(x)$$

= $(x-1)^4 (5q(x) + (x-1)q'(x))$

and therefore p'(x) is divisible by $(x-1)^4$.

(iii) In a similar way to before we can write $p(x) + 1 = (x + 1)^5 \times q_2(x)$. Substituting in x = -1 gives p(-1) = -1 and differentiating can be used to show that p'(x) is divisible by $(x + 1)^4$.

We can now write $p'(x) = k(x-1)^4(x+1)^4 = k(x^2-1)^4 = k(x^8-4x^6+6x^4-4x^2+1).$ Integrating gives: $p(x) = k(\frac{1}{6}x^9 - \frac{4}{7}x^7 + \frac{6}{5}x^5 - \frac{4}{3}x^3 + x) + c$

$$\mathbf{p}(x) = k \left(\frac{1}{9} x^5 - \frac{1}{7} x^7 + \frac{5}{5} x^5 - \frac{1}{3} x^5 + x \right)$$

and using p(1) = 1 and p(-1) = -1 we have:

$$k\left(\frac{1}{9} - \frac{4}{7} + \frac{6}{5} - \frac{4}{3} + 1\right) + c = 1$$

$$k\left(-\frac{1}{9} + \frac{4}{7} - \frac{6}{5} + \frac{4}{3} - 1\right) + c = -1$$

Adding these two together gives c = 0 and then the first one gives us:

 $k\left(\frac{35}{315} - \frac{180}{315} + \frac{378}{315} - \frac{420}{315} + \frac{315}{315}\right) = 1 \implies k = \frac{315}{128} \,.$ So $p(x) = \frac{315}{128} \left(\frac{1}{9}x^9 - \frac{4}{7}x^7 + \frac{6}{5}x^5 - \frac{4}{3}x^3 + x\right).$

UNIVERSITY OF CAMBRIDGE

- **5** $F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8, F_7 = 13, F_8 = 21, F_9 = 34 \text{ and } F_{10} = 55.$
 - (i) We have $F_i = F_{i-1} + F_{i-2}$ and, as long as $i \ge 4$, we have $F_{i-2} < F_{i-1}$ (when i = 3 we have equality as $F_1 = F_2$). Hence we have $F_i < 2F_{i-1}$ and so $\frac{1}{F_i} > \frac{1}{2F_{i-1}}$. We also have $\frac{1}{F_{i-1}} > \frac{1}{2F_{i-2}}$ (if $i \ge 5$) and so $\frac{1}{F_i} > \frac{1}{4F_{i-2}}$ etc.

We now have:

$$\begin{split} S &= \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \dots \\ S &> \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{2F_3} + \frac{1}{2F_4} + \frac{1}{2F_5} + \dots \\ S &> \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{2F_3} + \frac{1}{4F_3} + \frac{1}{8F_3} + \dots \\ S &> \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right) \end{split}$$

Using the values of F_1 , F_2 , F_3 and the sum of an infinite GP gives us:

$$S > 1 + 1 + \frac{1}{2} \times 2 = 3$$
.

In a similar way to above we have $F_i > 2F_{i-2}$ (for $i \ge 4$) and so $\frac{1}{F_i} < \frac{1}{2F_{i-2}}$. This is slightly different to before as you have to split up odd and even terms.

$$\begin{split} S &= \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \dots \\ S &= \left(\frac{1}{F_1} + \frac{1}{F_2}\right) + \left(\frac{1}{F_4} + \frac{1}{F_6} + \frac{1}{F_8} + \dots\right) + \left(\frac{1}{F_3} + \frac{1}{F_5} + \frac{1}{F_7} + \dots\right) \\ S &< \left(\frac{1}{F_1} + \frac{1}{F_2}\right) + \left(\frac{1}{F_4} + \frac{1}{2F_4} + \frac{1}{4F_4} + \dots\right) + \left(\frac{1}{F_3} + \frac{1}{2F_3} + \frac{1}{4F_3} + \dots\right) \\ S &< 1 + 1 + \frac{1}{3} \times 2 + \frac{1}{2} \times 2 = 3\frac{2}{3} \end{split}$$

(ii) For this part, use the same approach but take more terms before using the geometric series.

$$S = \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \dots$$

$$S > \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} \left(1 + \frac{1}{2} + \frac{1}{4} + \dots \right)$$

$$S > 1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} \times 2 = 1 + 1 + \frac{37}{30}$$

Hence $S > 3\frac{7}{30} > 3\frac{6}{30} = 3.2$

STEP 2 Miscellaneous: Solutions

And for the upper limit:

$$\begin{split} S &= \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \dots \\ S &= \left(\frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4}\right) + \left(\frac{1}{F_5} + \frac{1}{F_7} + \dots\right) + \left(\frac{1}{F_6} + \frac{1}{F_8} + \dots\right) \\ S &< \left(\frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4}\right) + \frac{1}{F_5}\left(1 + \frac{1}{2} + \dots\right) + \frac{1}{F_6}\left(1 + \frac{1}{2} + \dots\right) \\ S &< 1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} \times 2 + \frac{1}{8} \times 2 \end{split}$$

and so $S < 3\frac{29}{60} < 3\frac{1}{2}$.

6 (i) Setting a = 1, b = -1, $x_n = x_{n+1} = x$ and $y_n = y_{n+1} = y$ gives the simultaneous equations: $x = x^2 - y^2 + 1$

$$\begin{aligned} x &= x - y + y \\ y &= 2xy + 1 \end{aligned}$$

Using the second equation we have $x = \frac{y-1}{2y}$, which we can substitute into the first equation to get:

$$\frac{y-1}{2y} = \left(\frac{y-1}{2y}\right)^2 - y^2 + 1$$

$$2y(y-1) = (y-1)^2 - 4y^2 \times y^2 + 4y^2$$

$$2y^2 - 2y = y^2 - 2y + 1 - 4y^4 + 4y^2$$

$$4y^4 - 3y^2 - 1 = 0$$

$$(y-1) \left(4y^3 + 4y^2 + y + 1\right) = 0$$

$$(y-1)(y+1) \left(4y^2 + 1\right) = 0$$

Therefore y = 1 or $y = -1^2$. Using $x = \frac{y-1}{2y}$ gives the values as $(x_1, y_1) = (0, 1)$ and (1, -1).

(ii) Taking $(x_1, y_1) = (-1, 1)$ gives $(x_2, y_2) = (a, b)$ and $(x_3, y_3) = (a^2 - b^2 + a, 2ab + b + 2)$. If the sequence is to have period 2 then we need $(x_1, y_1) = (x_3, y_3) \neq (x_2, y_2)$.

Using
$$(x_1, y_1) = (x_3, y_3)$$
 we have:
 $a^2 - b^2 + a = -1$
 $2ab + b + 2 = 1$

Similarly to before, we have $a = \frac{-b-1}{2b}$ and so:

$$\left(\frac{-b-1}{2b}\right)^2 - b^2 - \frac{b+1}{2b} = -1$$
$$(-b-1)^2 - 4b^4 - 2b(b+1) = -4b^2$$
$$b^2 + 2b + 1 - 4b^4 - 2b^2 - 2b = -4b^2$$
$$4b^4 - 3b^2 - 1 = 0$$

This last equation is identical to the one in y for part (i), so we have $b = \pm 1$. This gives (a,b) = (0,-1) or (-1,1), but since the second gives $(x_2, y_2) = (x_1, y_1)$ (i.e. sequence is constant, not period 2) we discard that one to leave us with just one solution, (a,b) = (0,-1).

There is a neat solution here, where you can spot that if you let a = -x and b = -y you get the same equations as in part (i), which means you can deduce the values of a and b without solving the simultaneous equations.

²The equation $4y^2 = -1$ has no real solutions, and since we want (x, y) to be a point in the Cartesian plane, we want y to be real.

7 (i) The binomial expansion gives:

$$\left(1 + \frac{k}{100}\right)^{\frac{1}{2}} = 1 + \frac{1}{2} \times \left(\frac{k}{100}\right) + \frac{1}{2!} \times \frac{1}{2} \times \frac{-1}{2} \times \left(\frac{k}{100}\right)^2 + \frac{1}{3!} \times \frac{1}{2} \times \frac{-1}{2} \times \frac{-3}{2} \times \left(\frac{k}{100}\right)^3 + \dots \approx 1 + \frac{k}{200} - \frac{k^2}{80\,000} + \frac{k^3}{16\,000\,000}$$

(a) Substituting k = 8 gives:

$$\left(1 + \frac{k}{100}\right)^{\frac{1}{2}} = \left(\frac{108}{100}\right)^{\frac{1}{2}}$$
$$= \left(\frac{3 \times 36}{100}\right)^{\frac{1}{2}}$$
$$= \frac{6}{10} \times \sqrt{3}$$

Using the binomial expansion (with k = 8) gives:

$$\frac{6}{10} \times \sqrt{3} \approx 1 + \frac{8}{200} - \frac{8 \times 8}{80\,000} + \frac{8 \times 8 \times 8}{16\,000\,000}$$
$$= 1 + \frac{4}{100} - \frac{8}{10\,000} + \frac{4 \times 8}{1\,000\,000}$$
$$= 1.040032 - 0.0008$$
$$= 1.039232$$

Then the approximation for $\sqrt{3}$ is given by:

$$\sqrt{3} \approx \frac{1.039232}{0.6} = \frac{10.39232}{6}$$

Carrying out the division gives $\sqrt{3} \approx 1.73205$.

(b) Here we need to find a suitable value of k, and remember that we want k to be small in order to get a good approximation. Comparing to the previous part, we want $100 + k = a^2 \times 6$. Starting with a = 3 we have:

$$3^{2} \times 6 = 54 \implies k = -46$$

$$4^{2} \times 6 = 96 \implies k = -4$$

$$5^{2} \times 6 = 150 \implies k = 50$$

k = 50 is not a great choice as it is not small, so take k = -4. Substituting k = -4 gives:

$$\left(\frac{96}{100}\right)^{\frac{1}{2}} = \frac{4}{10} \times \sqrt{6}$$
$$\approx 1 - \frac{4}{200} - \frac{4 \times 4}{80\,000} - \frac{4 \times 4 \times 4}{16\,000\,000}$$
$$= 1 - \frac{2}{100} - \frac{2}{10\,000} - \frac{4}{1\,000\,000}$$
$$= 1 - 0.020204$$
$$= 0.979796$$

And so we have $\sqrt{6} \approx 9.79796 \div 4$, i.e. $\sqrt{6} \approx 2.44949$.

(ii) The first two terms of the binomial expansion of $\left(1 + \frac{k}{1000}\right)^{\frac{1}{3}}$ gives us:

$$\left(1 + \frac{k}{1000}\right)^{\frac{1}{3}} \approx 1 + \frac{k}{3000}$$

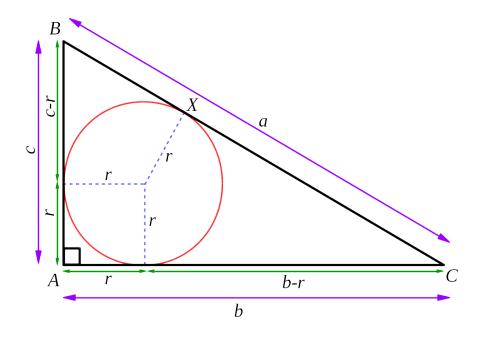
By comparing to the previous part, we want to find a value of k so that $1000+k = a^3 \times 3$, where k is small compared to 1000. The value of a which gives the smallest k is a = 7, which gives $1000 + k = 1029 \implies k = 29$. We then have:

$$\left(\frac{1029}{1000}\right)^{\frac{1}{3}} \approx 1 + \frac{29}{3000}$$

$$\frac{7}{10} \times \sqrt[3]{3} \approx \frac{3029}{3000}$$

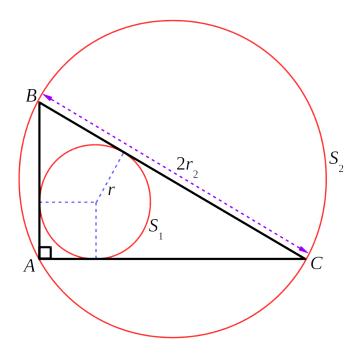
$$\sqrt[3]{3} \approx \frac{3029}{300\emptyset} \times \frac{1\emptyset}{7}$$
 and so
$$\sqrt[3]{3} \approx \frac{3029}{2100}$$
 as required

8 You should start by drawing a large and clear diagram, maybe something like below:



Then we have CX = b - r and BX = c - r (adjacent sides of a kite). Hence a = (b - r) + (c - r)and so 2r = b + c - a.

We now have another diagram with the circumcircle shown as well as the incircle.



Since $\triangle ABC$ is right-angled, BC is a diameter of S_2 . Hence the radius of S_2 satisfies $2r_2 = a$. The area of S_2 is πr_2^2 and the area between S_1 and the triangle is $\frac{1}{2}bc - \pi r^2$. Using the given fact about the ratio of these we have:

$$R\pi r_2^2 = \frac{1}{2}bc - \pi r^2$$

The result we are trying to obtain does not contain r or r_2 , so we substitute for these.

$$R\pi \left(\frac{a}{2}\right)^2 = \frac{1}{2}bc - \pi \left(\frac{b+c-a}{2}\right)^2$$
$$R\pi = \frac{2bc}{a^2} - \pi \left(\frac{b+c-a}{a}\right)^2$$
$$R\pi = \frac{2bc}{a^2} - \pi \left(q-1\right)^2$$

This is starting to look promising, but the $\frac{2bc}{a^2}$ needs writing in terms of q. We have:

$$q^{2} = \left(\frac{b+c}{a}\right)^{2}$$
$$= \frac{b^{2} + c^{2} + 2bc}{a^{2}}$$
$$= \frac{a^{2} + 2bc}{a^{2}}$$
using Pythagoras' theorem
$$= 1 + \frac{2bc}{a^{2}}$$

So we now have:

$$R\pi = q^{2} - 1 - \pi (q - 1)^{2}$$

= $q^{2} - 1 - \pi (q^{2} - 2q + 1)$
= $q^{2} - 1 - \pi q^{2} + 2\pi q - \pi$
= $-(\pi - 1)q^{2} + 2\pi q - (\pi + 1)$ as required

Note that this is a quadratic in q, and will have a maximum when $\frac{d}{dq}(\pi R) = 0$, i.e. when $q = \frac{2\pi}{2(\pi - 1)} = \frac{\pi}{(\pi - 1)}$. This gives

$$\pi R_{\max} = -(\pi - 1) \left(\frac{\pi}{\pi - 1}\right)^2 + 2\pi \left(\frac{\pi}{\pi - 1}\right) - (\pi + 1)$$
$$= -\frac{\pi^2}{\pi - 1} + \frac{2\pi^2}{\pi - 1} - (\pi + 1)$$
$$= \frac{\pi^2}{\pi - 1} - \frac{(\pi + 1)(\pi - 1)}{\pi - 1}$$
$$= \frac{\pi^2 - \pi^2 + 1}{\pi - 1}$$
$$= \frac{1}{\pi - 1}$$

And so since
$$R_{\max} = \frac{1}{\pi(\pi - 1)}$$
 we have $R \leq \frac{1}{\pi(\pi - 1)}$.

STEP 2 Miscellaneous: Solutions

9 (i) One stumbling block is not reading all the information in the "stem"! Since you are told that $\lambda = 1 + \sqrt{2}$ you know that $\lambda - 1 = \sqrt{2}$ etc.

We have:

$$\sum_{r=0}^{n} b_r = (\lambda^0 - \mu^0) + (\lambda^1 - \mu^1) + (\lambda^2 - \mu^2) + \dots + (\lambda^n - \mu^n)$$

= $(1 + \lambda^1 + \lambda^2 + \dots + \lambda^n) - (1 + \mu^1 + \mu^2 + \dots + \mu^n)$
= $\frac{\lambda^{n+1} - 1}{\lambda - 1} - \frac{\mu^{n+1} - 1}{\mu - 1}$
= $\frac{\lambda^{n+1} - 1}{\sqrt{2}} - \frac{\mu^{n+1} - 1}{-\sqrt{2}}$
= $\frac{1}{\sqrt{2}} (\lambda^{n+1} + \mu^{n+1}) - 2 \times \frac{1}{\sqrt{2}}$
= $\frac{1}{\sqrt{2}} a_{n+1} - \sqrt{2}$

Similarly:

$$\sum_{r=0}^{n} a_r = (\lambda^0 + \mu^0) + (\lambda^1 + \mu^1) + (\lambda^2 + \mu^2) + \dots + (\lambda^n + \mu^n)$$

= $(1 + \lambda^1 + \lambda^2 + \dots + \lambda^n) + (1 + \mu^1 + \mu^2 + \dots \mu^n)$
= $\frac{\lambda^{n+1} - 1}{\lambda - 1} + \frac{\mu^{n+1} - 1}{\mu - 1}$
= $\frac{\lambda^{n+1} - 1}{\sqrt{2}} + \frac{\mu^{n+1} - 1}{-\sqrt{2}}$
= $\frac{1}{\sqrt{2}} (\lambda^{n+1} - \mu^{n+1})$
= $\frac{1}{\sqrt{2}} b_{n+1}$

(ii) Here we have a "nested sum". Start by evaluating the "inner sum".

$$\sum_{m=0}^{2n} \left(\sum_{r=0}^{m} a_r\right) = \sum_{m=0}^{2n} \left(\frac{1}{\sqrt{2}}b_{m+1}\right)$$
$$= \sum_{m=0}^{2n+1} \left(\frac{1}{\sqrt{2}}b_m\right) \text{ since } b_0 = 0$$
$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}a_{(2n+1)+1} - \sqrt{2}\right)$$
$$= \frac{1}{2} \left(a_{2n+2} - 2\right)$$
$$= \frac{1}{2} \left(\lambda^{2n+2} + \mu^{2n+2} - 2\right)$$

We are trying to get something like $(b_{n+1})^2$.³ Noting that $\lambda \times \mu = 1 - 2 = -1$, and using the fact that n is odd, so that n + 1 is even and $(\lambda \mu)^{n+1} = 1$ we have:

$$\sum_{m=0}^{2n} \left(\sum_{r=0}^{m} a_r \right) = \frac{1}{2} \left(\lambda^{2n+2} + \mu^{2n+2} - 2 \right)$$
$$= \frac{1}{2} \left(\left(\lambda^{n+1} \right)^2 + \left(\mu^{n+1} \right)^2 - 2 \left(\lambda \mu \right)^{n+1} \right)$$
$$= \frac{1}{2} \left(\lambda^{n+1} - \mu^{n+1} \right)^2$$
$$= \frac{1}{2} \left(b_{n+1} \right)^2 .$$

When n is even, n + 1 is odd and $(\lambda \mu)^{n+1} = -1$. Then we have:

$$\sum_{m=0}^{2n} \left(\sum_{r=0}^{m} a_r \right) = \frac{1}{2} \left(\lambda^{2n+2} + \mu^{2n+2} - 2 \right)$$
$$= \frac{1}{2} \left(\left(\lambda^{n+1} \right)^2 + \left(\mu^{n+1} \right)^2 + 2 \left(\lambda \mu \right)^{n+1} \right)$$
$$= \frac{1}{2} \left(\lambda^{n+1} + \mu^{n+1} \right)^2$$
$$= \frac{1}{2} \left(a_{n+1} \right)^2 .$$

(iii) From part (i) we have
$$\left(\sum_{r=0}^{n} a_r\right)^2 = \left(\frac{1}{\sqrt{2}}b_{n+1}\right)^2 = \frac{1}{2}(b_{n+1})^2$$
.

We also need:

$$\sum_{r=0}^{n} a_{2r+1} = a_1 + a_3 + a_5 + \dots + a_{2n+1}$$

= $(\lambda^1 + \lambda^3 + \lambda^5 + \dots + \lambda^{2n+1}) + (\mu^1 + \mu^3 + \mu^5 + \dots + \mu^{2n+1})$
= $\lambda \left(1 + \lambda^2 + (\lambda^2)^2 + \dots + (\lambda^2)^n \right) + \mu \left(1 + \mu^2 + (\mu^2)^2 + \dots + (\mu^2)^n \right)$
= $\frac{\lambda \left((\lambda^2)^{n+1} - 1 \right)}{\lambda^2 - 1} + \frac{\mu \left((\mu^2)^{n+1} - 1 \right)}{\mu^2 - 1}$

³What I did, and what I would expect a lot of people to do, is expand $(b_{n+1})^2 = (\lambda^{n+1} - \mu^{n+1})^2$ and try and figure out how it is related to what I have already done. Then I wrote up a solution "going the correct way".

maths.org/step

 $\lambda^2 - 1 = 3 + 2\sqrt{2} - 1 = 2(1 + \sqrt{2}) = 2\lambda$, and similarly $\mu^2 - 1 = 2\mu$. We now have:

$$\sum_{r=0}^{n} a_{2r+1} = \frac{\lambda \left(\left(\lambda^2\right)^{n+1} - 1 \right)}{\lambda^2 - 1} + \frac{\mu \left(\left(\mu^2\right)^{n+1} - 1 \right)}{\mu^2 - 1}$$
$$= \frac{\lambda \left(\left(\lambda^2\right)^{n+1} - 1 \right)}{2\lambda} + \frac{\mu \left(\left(\mu^2\right)^{n+1} - 1 \right)}{2\mu}$$
$$= \frac{1}{2} \left(\left(\lambda^{n+1}\right)^2 + \left(\mu^{n+1}\right)^2 - 2 \right)$$

Which — as in part (ii) — is equal to $\frac{1}{2}(b_{n+1})^2$ if n is odd and $\frac{1}{2}(a_{n+1})^2$ if n is even.

$$\begin{split} \left(\sum_{r=0}^{n} a_{r}\right)^{2} &- \sum_{r=0}^{n} a_{2r+1} = \frac{1}{2} (b_{n+1})^{2} - \frac{1}{2} (b_{n+1})^{2} = 0 & \text{if } n \text{ is odd} \\ \left(\sum_{r=0}^{n} a_{r}\right)^{2} &- \sum_{r=0}^{n} a_{2r+1} = \frac{1}{2} (b_{n+1})^{2} - \frac{1}{2} (a_{n+1})^{2} \\ &= \frac{1}{2} \left(\left(\lambda^{n+1}\right)^{2} + \left(\mu^{n+1}\right)^{2} - 2 (\lambda\mu)^{n+1} \right) \\ &- \frac{1}{2} \left(\left(\lambda^{n+1}\right)^{2} + \left(\mu^{n+1}\right)^{2} + 2 (\lambda\mu)^{n+1} \right) \\ &= -2 (\lambda\mu)^{n+1} \\ &= -2 \times (-1)^{n+1} = 2 & \text{if } n \text{ is even.} \end{split}$$

