STEP Support Programme

STEP 2 Miscellaneous Questions: Solutions

1 The first 10 cubes are $1,8,27,64,125,216,343,512,729,1000$.
(i) Substituting $y=k-x$ gives:

$$
\begin{aligned}
x^{3}+(k-x)^{3} & =k z^{3} \\
x^{\not ㇒}+k^{3}-3 k^{2} x+3 k x^{2}-\not x^{\not ㇒} & =k z^{3} \\
k^{2}-3 k x+3 x^{2} & =z^{3} \quad \text { since } k>0 .
\end{aligned}
$$

Note that we need to state something like $k \neq 0$ before we divide by k.
We then have:

$$
\begin{aligned}
\frac{4 z^{3}-k^{2}}{3} & =\frac{4\left(k^{2}-3 k x+3 x^{2}\right)-k^{2}}{3} \\
& =\frac{3 k^{2}-12 k x+12 x^{2}}{3} \\
& =k^{2}-4 k x+4 x^{2} \\
& =(k-2 x)^{2}
\end{aligned}
$$

You can if you like use $k=y+x$ to re-write the last line as $(y-x)^{2}$.
A perfect square is greater than or equal to 0 , so we have $4 z^{3}-k^{2} \geqslant 0 \Longrightarrow z^{3} \geqslant \frac{1}{4} k^{2}$. For the other part of the inequality use:

$$
\begin{aligned}
z^{3} & =k^{2}-3 k x+3 x^{2} \\
& =k^{2}-3 x(k-x) \\
& =k^{2}-3 x y
\end{aligned}
$$

and as $x, y>0$ we have $z^{3}<k^{2}$. Therefore we have $\frac{1}{4} k^{2} \leqslant z^{3}<k^{2}$.
When $k=20$ we have $100 \leqslant z^{3}<400$, so z must be 5,6 or 7 (this is why you were asked to work out the first few cubes!). Testing each of these in $\frac{4 z^{3}-k^{2}}{3}$ shows that only $z=7$ results in a perfect square. Using $\frac{4 z^{3}-k^{2}}{3}=18^{2}=(y-x)^{2}$ and $x+y=k=20$, and assuming WLOG ${ }^{1}$ that $y \geqslant x$, we can solve the simultaneous equations to get $x=1, y=19$. You can then check that $1^{3}+19^{3}=20 \times 7^{3}$ if you wish.

[^0](ii) Follow the same method as part (i)!

Substituting $y=z^{2}-x$ gives:

$$
\begin{aligned}
x^{3}+\left(z^{2}-x\right)^{3} & =k z^{3} \\
x^{\not 又}+z^{6}-3 z^{4} x+3 z^{2} x^{2}-\not x^{夕} & =k z^{3} \\
z^{4}-3 z^{2} x+3 x^{2} & =k z \quad \text { since } z>0 .
\end{aligned}
$$

We are then looking for something that will give us a perfect square. Comparison with part (i) leads us to:

$$
\begin{aligned}
\frac{4 k z-z^{4}}{3} & =\frac{4\left(z^{4}-3 z^{2} x+3 x^{2}\right)-z^{4}}{3} \\
& =z^{4}-4 z^{2} x+4 x^{2} \\
& =\left(z^{2}-2 x\right)^{2} \\
& =(y-x)^{2} .
\end{aligned}
$$

We then have $4 k z-z^{4} \geqslant 0 \Longrightarrow z^{3} \leqslant 4 k$ (since $z>0$ we can divide by z without changing the inequality direction).

We also have:

$$
\begin{aligned}
k z & =z^{4}-3 z^{2} x+3 x^{2} \\
& =z^{4}-3 x\left(z^{2}-x\right) \\
& =z^{4}-3 x y
\end{aligned}
$$

and as $x, y>0$ we have $k z<z^{4} \Longrightarrow k<z^{3}$. Hence we have $k<z^{3} \leqslant 4 k$. With $k=19$ this gives $19<z^{3} \leqslant 76$ and so $z=3$ or 4 . Both of these give perfect squares for $\frac{4 k z-z^{4}}{3}=(y-x)^{2}$.
$z=3$ gives $x+y=z^{2}=9$ and $(y-x)^{2}=49$, so $y=8$ and $x=1$.
$z=4$ gives $x+y=z^{2}=16$ and $(y-x)^{2}=16$, so $y=10$ and $x=6$.
Again, you can check that these solve $x^{3}+y^{3}=k z^{3}$.

2 It is helpful to define a coordinate system for the tetrahedron. Let the line $A B$ be on the x-axis so that the midpoint of $A B$ is at the origin. This means that we have $A=\left(-\frac{1}{2}, 0,0\right)$ and $B=\left(\frac{1}{2}, 0,0\right)$. Using Pythagoras' theorem in $\triangle A O C$ gives $C=\left(0, \frac{\sqrt{3}}{2}, 0\right)$.
(i) The centroid of $\triangle A B C$ is a third of the distance from the centre of $A B$ to C which gives $P=\left(0, \frac{\sqrt{3}}{6}, 0\right)$. You can the use Pythagoras' theorem to find lengths $P A$ and $P D$:

$$
\begin{aligned}
& P A^{2}=\frac{1}{4}+\frac{3}{36}=\frac{1}{3} \\
& P D^{2}=1-\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

and hence $P D=\sqrt{\frac{2}{3}}$.
(ii) The angle between two adjacent faces is given by, e.g., $\angle D O C=\angle D O P$. Using the right-angled triangle $\triangle D O P$ gives $\cos (\angle D O P)=\frac{\frac{1}{6} \sqrt{3}}{\frac{1}{2} \sqrt{3}}=\frac{1}{3}$.
(iii) The centre of the sphere, S, must lie on the line $D P$ by symmetry. Let X be where the sphere meets the face $A B D$.

We know that $O P=O X=\frac{\sqrt{3}}{6}, O D=\frac{\sqrt{3}}{2}$ and $D P=\frac{\sqrt{6}}{3}$. Using the right-angled triangle $\triangle D X S$ we have:

$$
\begin{aligned}
D S^{2} & =X S^{2}+X D^{2} \\
\left(\frac{\sqrt{6}}{3}-r\right)^{2} & =r^{2}+\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{6}\right)^{2} \\
\frac{6}{9}-\frac{2 \sqrt{6}}{3} r+\nvdash^{2} & =\nvdash^{\mathscr{2}}+\frac{1}{3} \\
\frac{2 \sqrt{6}}{3} r & =\frac{1}{3} \\
r & =\frac{1}{2 \sqrt{6}}=\frac{\sqrt{6}}{12}
\end{aligned}
$$

3 The curve $x y=v$ is symmetric in $y=x$ (which we can see as if we interchange x and y we get the same curve) and $y=-x$ (which we can see by using $x^{\prime}=-y$ and $y^{\prime}=-x$).
The curve $x^{4}+y^{4}=u$ is symmetric in $y=x, y=-x$, the x-axis (which can be seen by substituting $y^{\prime}=-y$) and the y-axis (substitute $x^{\prime}=-x$).

If $A=(\alpha, \beta)$ then $B=(\beta, \alpha), C=(-\alpha,-\beta)$ and $D=(-\beta,-\alpha)$.
To show that $A B C D$ is a quadrilateral, you can show that $A B$ is perpendicular to $B C$. We have:

$$
m_{A B} \times m_{B C}=\frac{\beta-\alpha}{\alpha-\beta} \times \frac{\alpha+\beta}{\beta+\alpha}=-1 .
$$

Therefore $A B$ and $B C$ are perpendicular. You can then use the same technique to show that all of the four sides are perpendicular, or you can use symmetry in $y=x$ and $y=-x$ to show this.
To find the area:

$$
\begin{aligned}
& A B^{2}=(\alpha-\beta)^{2}+(\beta-\alpha)^{2}=2(\alpha-\beta)^{2} \\
& B C^{2}=(\beta+\alpha)^{2}+(\alpha+\beta)^{2}=2(\alpha+\beta)^{2} .
\end{aligned}
$$

Remembering that $\alpha>\beta$ the area is:

$$
A B \times B C=\sqrt{2}(\alpha-\beta) \times \sqrt{2}(\alpha+\beta)=2\left(\alpha^{2}-\beta^{2}\right)
$$

The question asks us for the area in terms of u and v. Since α and β satisfy the equations of the curves we have $\alpha^{4}+\beta^{4}=u$ and $\alpha \beta=v$.
Considering $\left(\alpha^{2}-\beta^{2}\right)^{2}$ gives us:

$$
\begin{aligned}
\left(\alpha^{2}-\beta^{2}\right)^{2} & =\alpha^{4}-2 \alpha^{2} \beta^{2}+\beta^{4} \\
& =\alpha^{4}+\beta^{4}-2(\alpha \beta)^{2} \\
& =u-2 v^{2}
\end{aligned}
$$

So the area is $2 \sqrt{u-2 v^{2}}$.
Then for $u=81$ and $v=4$ the area is $2 \sqrt{81-32}=2 \sqrt{49}=14$.

4 We can deduce that

$$
\begin{equation*}
\mathrm{p}(x)-1=(x-1)^{5} \times \mathrm{q}(x) \tag{*}
\end{equation*}
$$

where $\mathrm{q}(x)$ is a quartic.
(i) Using $(*)$ we have $p(1)-1=(1-1)^{5} \times q(1)$, so $p(1)-1=0 \Longrightarrow p(1)=1$.
(ii) Differentiating (*) gives:

$$
\begin{aligned}
\mathrm{p}^{\prime}(x) & =5(x-1)^{4} \times \mathrm{q}(x)+(x-1)^{5} \times \mathrm{q}^{\prime}(x) \\
& =(x-1)^{4}\left(5 \mathrm{q}(x)+(x-1) \mathrm{q}^{\prime}(x)\right)
\end{aligned}
$$

and therefore $\mathrm{p}^{\prime}(x)$ is divisible by $(x-1)^{4}$.
(iii) In a similar way to before we can write $\mathrm{p}(x)+1=(x+1)^{5} \times \mathrm{q}_{2}(x)$. Substituting in $x=-1$ gives $\mathrm{p}(-1)=-1$ and differentiating can be used to show that $\mathrm{p}^{\prime}(x)$ is divisible by $(x+1)^{4}$.

We can now write $\mathrm{p}^{\prime}(x)=k(x-1)^{4}(x+1)^{4}=k\left(x^{2}-1\right)^{4}=k\left(x^{8}-4 x^{6}+6 x^{4}-4 x^{2}+1\right)$. Integrating gives:

$$
\mathrm{p}(x)=k\left(\frac{1}{9} x^{9}-\frac{4}{7} x^{7}+\frac{6}{5} x^{5}-\frac{4}{3} x^{3}+x\right)+c
$$

and using $\mathrm{p}(1)=1$ and $\mathrm{p}(-1)=-1$ we have:

$$
\begin{aligned}
k\left(\frac{1}{9}-\frac{4}{7}+\frac{6}{5}-\frac{4}{3}+1\right)+c & =1 \\
k\left(-\frac{1}{9}+\frac{4}{7}-\frac{6}{5}+\frac{4}{3}-1\right)+c & =-1
\end{aligned}
$$

Adding these two together gives $c=0$ and then the first one gives us:

$$
k\left(\frac{35}{315}-\frac{180}{315}+\frac{378}{315}-\frac{420}{315}+\frac{315}{315}\right)=1 \Longrightarrow k=\frac{315}{128} .
$$

So $\mathrm{p}(x)=\frac{315}{128}\left(\frac{1}{9} x^{9}-\frac{4}{7} x^{7}+\frac{6}{5} x^{5}-\frac{4}{3} x^{3}+x\right)$.
$5 \quad F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, F_{7}=13, F_{8}=21, F_{9}=34$ and $F_{10}=55$.
(i) We have $F_{i}=F_{i-1}+F_{i-2}$ and, as long as $i \geqslant 4$, we have $F_{i-2}<F_{i-1}$ (when $i=3$ we have equality as $F_{1}=F_{2}$). Hence we have $F_{i}<2 F_{i-1}$ and so $\frac{1}{F_{i}}>\frac{1}{2 F_{i-1}}$. We also have $\frac{1}{F_{i-1}}>\frac{1}{2 F_{i-2}}($ if $i \geqslant 5)$ and so $\frac{1}{F_{i}}>\frac{1}{4 F_{i-2}}$ etc.
We now have:

$$
\begin{aligned}
& S=\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{F_{4}}+\frac{1}{F_{5}}+\frac{1}{F_{6}}+\ldots \\
& S>\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{2 F_{3}}+\frac{1}{2 F_{4}}+\frac{1}{2 F_{5}}+\ldots \\
& S>\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{2 F_{3}}+\frac{1}{4 F_{3}}+\frac{1}{8 F_{3}}+\ldots \\
& S>\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right)
\end{aligned}
$$

Using the values of F_{1}, F_{2}, F_{3} and the sum of an infinite GP gives us:

$$
S>1+1+\frac{1}{2} \times 2=3
$$

In a similar way to above we have $F_{i}>2 F_{i-2}($ for $i \geqslant 4)$ and so $\frac{1}{F_{i}}<\frac{1}{2 F_{i-2}}$. This is slightly different to before as you have to split up odd and even terms.

$$
\begin{aligned}
& S=\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{F_{4}}+\frac{1}{F_{5}}+\frac{1}{F_{6}}+\ldots \\
& S=\left(\frac{1}{F_{1}}+\frac{1}{F_{2}}\right)+\left(\frac{1}{F_{4}}+\frac{1}{F_{6}}+\frac{1}{F_{8}}+\ldots\right)+\left(\frac{1}{F_{3}}+\frac{1}{F_{5}}+\frac{1}{F_{7}}+\ldots\right) \\
& S<\left(\frac{1}{F_{1}}+\frac{1}{F_{2}}\right)+\left(\frac{1}{F_{4}}+\frac{1}{2 F_{4}}+\frac{1}{4 F_{4}}+\ldots\right)+\left(\frac{1}{F_{3}}+\frac{1}{2 F_{3}}+\frac{1}{4 F_{3}}+\ldots\right) \\
& S<1+1+\frac{1}{3} \times 2+\frac{1}{2} \times 2=3 \frac{2}{3}
\end{aligned}
$$

(ii) For this part, use the same approach but take more terms before using the geometric series.

$$
\begin{aligned}
& S=\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{F_{4}}+\frac{1}{F_{5}}+\frac{1}{F_{6}}+\ldots \\
& S>\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{F_{4}}+\frac{1}{F_{5}}\left(1+\frac{1}{2}+\frac{1}{4}+\ldots\right) \\
& S>1+1+\frac{1}{2}+\frac{1}{3}+\frac{1}{5} \times 2=1+1+\frac{37}{30}
\end{aligned}
$$

Hence $S>3 \frac{7}{30}>3 \frac{6}{30}=3.2$

And for the upper limit:

$$
\begin{aligned}
& S=\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{F_{4}}+\frac{1}{F_{5}}+\frac{1}{F_{6}}+\ldots \\
& S=\left(\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{F_{4}}\right)+\left(\frac{1}{F_{5}}+\frac{1}{F_{7}}+\ldots\right)+\left(\frac{1}{F_{6}}+\frac{1}{F_{8}}+\ldots\right) \\
& S<\left(\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{3}}+\frac{1}{F_{4}}\right)+\frac{1}{F_{5}}\left(1+\frac{1}{2}+\ldots\right)+\frac{1}{F_{6}}\left(1+\frac{1}{2}+\ldots\right) \\
& S<1+1+\frac{1}{2}+\frac{1}{3}+\frac{1}{5} \times 2+\frac{1}{8} \times 2
\end{aligned}
$$

and so $S<3 \frac{29}{60}<3 \frac{1}{2}$.

6 (i) Setting $a=1, b=-1, x_{n}=x_{n+1}=x$ and $y_{n}=y_{n+1}=y$ gives the simultaneous equations:

$$
\begin{aligned}
x & =x^{2}-y^{2}+1 \\
y & =2 x y+1
\end{aligned}
$$

Using the second equation we have $x=\frac{y-1}{2 y}$, which we can substitute into the first equation to get:

$$
\text { t: } \begin{aligned}
\frac{y-1}{2 y} & =\left(\frac{y-1}{2 y}\right)^{2}-y^{2}+1 \\
2 y(y-1) & =(y-1)^{2}-4 y^{2} \times y^{2}+4 y^{2} \\
2 y^{2}-2 y & =y^{2}-2 y+1-4 y^{4}+4 y^{2} \\
4 y^{4}-3 y^{2}-1 & =0 \\
(y-1)\left(4 y^{3}+4 y^{2}+y+1\right) & =0 \\
(y-1)(y+1)\left(4 y^{2}+1\right) & =0
\end{aligned}
$$

Therefore $y=1$ or $y=-1^{2}$. Using $x=\frac{y-1}{2 y}$ gives the values as $\left(x_{1}, y_{1}\right)=(0,1)$ and $(1,-1)$.
(ii) Taking $\left(x_{1}, y_{1}\right)=(-1,1)$ gives $\left(x_{2}, y_{2}\right)=(a, b)$ and $\left(x_{3}, y_{3}\right)=\left(a^{2}-b^{2}+a, 2 a b+b+2\right)$. If the sequence is to have period 2 then we need $\left(x_{1}, y_{1}\right)=\left(x_{3}, y_{3}\right) \neq\left(x_{2}, y_{2}\right)$.
Using $\left(x_{1}, y_{1}\right)=\left(x_{3}, y_{3}\right)$ we have:

$$
\begin{aligned}
& a^{2}-b^{2}+a=-1 \\
& 2 a b+b+2=1
\end{aligned}
$$

Similarly to before, we have $a=\frac{-b-1}{2 b}$ and so:

$$
\begin{aligned}
\left(\frac{-b-1}{2 b}\right)^{2}-b^{2}-\frac{b+1}{2 b} & =-1 \\
(-b-1)^{2}-4 b^{4}-2 b(b+1) & =-4 b^{2} \\
b^{2}+2 \hbar+1-4 b^{4}-2 b^{2}-2 \hbar & =-4 b^{2} \\
4 b^{4}-3 b^{2}-1 & =0
\end{aligned}
$$

This last equation is identical to the one in y for part (i), so we have $b= \pm 1$. This gives $(a, b)=(0,-1)$ or $(-1,1)$, but since the second gives $\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right)$ (i.e. sequence is constant, not period 2) we discard that one to leave us with just one solution, $(a, b)=(0,-1)$.

There is a neat solution here, where you can spot that if you let $a=-x$ and $b=-y$ you get the same equations as in part (i), which means you can deduce the values of a and b without solving the simultaneous equations.

[^1]7 (i) The binomial expansion gives:

$$
\begin{aligned}
&\left(1+\frac{k}{100}\right)^{\frac{1}{2}}= 1+\frac{1}{2} \times\left(\frac{k}{100}\right)+\frac{1}{2!} \times \frac{1}{2} \times \frac{-1}{2} \times\left(\frac{k}{100}\right)^{2} \\
&+\frac{1}{3!} \times \frac{1}{2} \times \frac{-1}{2} \times \frac{-3}{2} \times\left(\frac{k}{100}\right)^{3}+\ldots \\
& \approx 1+\frac{k}{200}-\frac{k^{2}}{80000}+\frac{k^{3}}{16000000}
\end{aligned}
$$

(a) Substituting $k=8$ gives:

$$
\begin{aligned}
\left(1+\frac{k}{100}\right)^{\frac{1}{2}} & =\left(\frac{108}{100}\right)^{\frac{1}{2}} \\
& =\left(\frac{3 \times 36}{100}\right)^{\frac{1}{2}} \\
& =\frac{6}{10} \times \sqrt{3}
\end{aligned}
$$

Using the binomial expansion (with $k=8$) gives:

$$
\begin{aligned}
\frac{6}{10} \times \sqrt{3} & \approx 1+\frac{8}{200}-\frac{8 \times 8}{80000}+\frac{8 \times 8 \times 8}{16000000} \\
& =1+\frac{4}{100}-\frac{8}{10000}+\frac{4 \times 8}{1000000} \\
& =1.040032-0.0008 \\
& =1.039232
\end{aligned}
$$

Then the approximation for $\sqrt{3}$ is given by:

$$
\begin{aligned}
\sqrt{3} & \approx \frac{1.039232}{0.6} \\
& =\frac{10.39232}{6}
\end{aligned}
$$

Carrying out the division gives $\sqrt{3} \approx 1.73205$.
(b) Here we need to find a suitable value of k, and remember that we want k to be small in order to get a good approximation. Comparing to the previous part, we want $100+k=a^{2} \times 6$. Starting with $a=3$ we have:

$$
\begin{aligned}
3^{2} \times 6=54 & \Longrightarrow k=-46 \\
4^{2} \times 6=96 & \Longrightarrow k=-4 \\
5^{2} \times 6=150 & \Longrightarrow k=50
\end{aligned}
$$

$k=50$ is not a great choice as it is not small, so take $k=-4$.
Substituting $k=-4$ gives:

$$
\begin{aligned}
\left(\frac{96}{100}\right)^{\frac{1}{2}} & =\frac{4}{10} \times \sqrt{6} \\
& \approx 1-\frac{4}{200}-\frac{4 \times 4}{80000}-\frac{4 \times 4 \times 4}{16000000} \\
& =1-\frac{2}{100}-\frac{2}{10000}-\frac{4}{1000000} \\
& =1-0.020204 \\
& =0.979796
\end{aligned}
$$

And so we have $\sqrt{6} \approx 9.79796 \div 4$, i.e. $\sqrt{6} \approx 2.44949$.
(ii) The first two terms of the binomial expansion of $\left(1+\frac{k}{1000}\right)^{\frac{1}{3}}$ gives us:

$$
\left(1+\frac{k}{1000}\right)^{\frac{1}{3}} \approx 1+\frac{k}{3000}
$$

By comparing to the previous part, we want to find a value of k so that $1000+k=a^{3} \times 3$, where k is small compared to 1000 . The value of a which gives the smallest k is $a=7$, which gives $1000+k=1029 \Longrightarrow k=29$. We then have:

$$
\begin{aligned}
\left(\frac{1029}{1000}\right)^{\frac{1}{3}} & \approx 1+\frac{29}{3000} \\
\frac{7}{10} \times \sqrt[3]{3} & \approx \frac{3029}{3000} \\
\sqrt[3]{3} & \approx \frac{3029}{300 \emptyset} \times \frac{1 \emptyset}{7} \quad \text { and so } \\
\sqrt[3]{3} & \approx \frac{3029}{2100}
\end{aligned} \quad \text { as required. }
$$

8 You should start by drawing a large and clear diagram, maybe something like below:

Then we have $C X=b-r$ and $B X=c-r$ (adjacent sides of a kite). Hence $a=(b-r)+(c-r)$ and so $2 r=b+c-a$.

We now have another diagram with the circumcircle shown as well as the incircle.

Since $\triangle A B C$ is right-angled, $B C$ is a diameter of S_{2}. Hence the radius of S_{2} satisfies $2 r_{2}=a$. The area of S_{2} is πr_{2}^{2} and the area between S_{1} and the triangle is $\frac{1}{2} b c-\pi r^{2}$. Using the given fact about the ratio of these we have:

$$
R \pi r_{2}^{2}=\frac{1}{2} b c-\pi r^{2}
$$

The result we are trying to obtain does not contain r or r_{2}, so we substitute for these.

$$
\begin{aligned}
R \pi\left(\frac{a}{2}\right)^{2} & =\frac{1}{2} b c-\pi\left(\frac{b+c-a}{2}\right)^{2} \\
R \pi & =\frac{2 b c}{a^{2}}-\pi\left(\frac{b+c-a}{a}\right)^{2} \\
R \pi & =\frac{2 b c}{a^{2}}-\pi(q-1)^{2}
\end{aligned}
$$

This is starting to look promising, but the $\frac{2 b c}{a^{2}}$ needs writing in terms of q. We have:

$$
\begin{aligned}
q^{2} & =\left(\frac{b+c}{a}\right)^{2} \\
& =\frac{b^{2}+c^{2}+2 b c}{a^{2}} \\
& =\frac{a^{2}+2 b c}{a^{2}} \quad \text { using Pythagoras' theorem } \\
& =1+\frac{2 b c}{a^{2}}
\end{aligned}
$$

So we now have:

$$
\begin{aligned}
R \pi & =q^{2}-1-\pi(q-1)^{2} \\
& =q^{2}-1-\pi\left(q^{2}-2 q+1\right) \\
& =q^{2}-1-\pi q^{2}+2 \pi q-\pi \\
& =-(\pi-1) q^{2}+2 \pi q-(\pi+1) \quad \text { as required }
\end{aligned}
$$

Note that this is a quadratic in q, and will have a maximum when $\frac{\mathrm{d}}{\mathrm{d} q}(\pi R)=0$, i.e. when $q=\frac{2 \pi}{2(\pi-1)}=\frac{\pi}{(\pi-1)}$. This gives

$$
\begin{aligned}
\pi R_{\max } & =-(\pi-1)\left(\frac{\pi}{\pi-1}\right)^{2}+2 \pi\left(\frac{\pi}{\pi-1}\right)-(\pi+1) \\
& =-\frac{\pi^{2}}{\pi-1}+\frac{2 \pi^{2}}{\pi-1}-(\pi+1) \\
& =\frac{\pi^{2}}{\pi-1}-\frac{(\pi+1)(\pi-1)}{\pi-1} \\
& =\frac{\pi^{2}-\pi^{2}+1}{\pi-1} \\
& =\frac{1}{\pi-1}
\end{aligned}
$$

And so since $R_{\max }=\frac{1}{\pi(\pi-1)}$ we have $R \leqslant \frac{1}{\pi(\pi-1)}$.

9 (i) One stumbling block is not reading all the information in the "stem"! Since you are told that $\lambda=1+\sqrt{2}$ you know that $\lambda-1=\sqrt{2}$ etc.

We have:

$$
\begin{aligned}
\sum_{r=0}^{n} b_{r} & =\left(\lambda^{0}-\mu^{0}\right)+\left(\lambda^{1}-\mu^{1}\right)+\left(\lambda^{2}-\mu^{2}\right)+\ldots+\left(\lambda^{n}-\mu^{n}\right) \\
& =\left(1+\lambda^{1}+\lambda^{2}+\ldots+\lambda^{n}\right)-\left(1+\mu^{1}+\mu^{2}+\ldots \mu^{n}\right) \\
& =\frac{\lambda^{n+1}-1}{\lambda-1}-\frac{\mu^{n+1}-1}{\mu-1} \\
& =\frac{\lambda^{n+1}-1}{\sqrt{2}}-\frac{\mu^{n+1}-1}{-\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}\left(\lambda^{n+1}+\mu^{n+1}\right)-2 \times \frac{1}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}} a_{n+1}-\sqrt{2}
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
\sum_{r=0}^{n} a_{r} & =\left(\lambda^{0}+\mu^{0}\right)+\left(\lambda^{1}+\mu^{1}\right)+\left(\lambda^{2}+\mu^{2}\right)+\ldots+\left(\lambda^{n}+\mu^{n}\right) \\
& =\left(1+\lambda^{1}+\lambda^{2}+\ldots+\lambda^{n}\right)+\left(1+\mu^{1}+\mu^{2}+\ldots \mu^{n}\right) \\
& =\frac{\lambda^{n+1}-1}{\lambda-1}+\frac{\mu^{n+1}-1}{\mu-1} \\
& =\frac{\lambda^{n+1}-1}{\sqrt{2}}+\frac{\mu^{n+1}-1}{-\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}\left(\lambda^{n+1}-\mu^{n+1}\right) \\
& =\frac{1}{\sqrt{2}} b_{n+1}
\end{aligned}
$$

(ii) Here we have a "nested sum". Start by evaluating the "inner sum".

$$
\begin{aligned}
\sum_{m=0}^{2 n}\left(\sum_{r=0}^{m} a_{r}\right) & =\sum_{m=0}^{2 n}\left(\frac{1}{\sqrt{2}} b_{m+1}\right) \\
& =\sum_{m=0}^{2 n+1}\left(\frac{1}{\sqrt{2}} b_{m}\right) \quad \text { since } b_{0}=0 \\
& =\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} a_{(2 n+1)+1}-\sqrt{2}\right) \\
& =\frac{1}{2}\left(a_{2 n+2}-2\right) \\
& =\frac{1}{2}\left(\lambda^{2 n+2}+\mu^{2 n+2}-2\right)
\end{aligned}
$$

We are trying to get something like $\left(b_{n+1}\right)^{2} .^{3}$ Noting that $\lambda \times \mu=1-2=-1$, and using the fact that n is odd, so that $n+1$ is even and $(\lambda \mu)^{n+1}=1$ we have:

$$
\begin{aligned}
\sum_{m=0}^{2 n}\left(\sum_{r=0}^{m} a_{r}\right) & =\frac{1}{2}\left(\lambda^{2 n+2}+\mu^{2 n+2}-2\right) \\
& =\frac{1}{2}\left(\left(\lambda^{n+1}\right)^{2}+\left(\mu^{n+1}\right)^{2}-2(\lambda \mu)^{n+1}\right) \\
& =\frac{1}{2}\left(\lambda^{n+1}-\mu^{n+1}\right)^{2} \\
& =\frac{1}{2}\left(b_{n+1}\right)^{2}
\end{aligned}
$$

When n is even, $n+1$ is odd and $(\lambda \mu)^{n+1}=-1$. Then we have:

$$
\begin{aligned}
\sum_{m=0}^{2 n}\left(\sum_{r=0}^{m} a_{r}\right) & =\frac{1}{2}\left(\lambda^{2 n+2}+\mu^{2 n+2}-2\right) \\
& =\frac{1}{2}\left(\left(\lambda^{n+1}\right)^{2}+\left(\mu^{n+1}\right)^{2}+2(\lambda \mu)^{n+1}\right) \\
& =\frac{1}{2}\left(\lambda^{n+1}+\mu^{n+1}\right)^{2} \\
& =\frac{1}{2}\left(a_{n+1}\right)^{2}
\end{aligned}
$$

(iii) From part (i) we have $\left(\sum_{r=0}^{n} a_{r}\right)^{2}=\left(\frac{1}{\sqrt{2}} b_{n+1}\right)^{2}=\frac{1}{2}\left(b_{n+1}\right)^{2}$.

We also need:

$$
\begin{aligned}
\sum_{r=0}^{n} a_{2 r+1} & =a_{1}+a_{3}+a_{5}+\ldots+a_{2 n+1} \\
& =\left(\lambda^{1}+\lambda^{3}+\lambda^{5}+\ldots+\lambda^{2 n+1}\right)+\left(\mu^{1}+\mu^{3}+\mu^{5}+\ldots+\mu^{2 n+1}\right) \\
& =\lambda\left(1+\lambda^{2}+\left(\lambda^{2}\right)^{2}+\ldots+\left(\lambda^{2}\right)^{n}\right)+\mu\left(1+\mu^{2}+\left(\mu^{2}\right)^{2}+\ldots+\left(\mu^{2}\right)^{n}\right) \\
& =\frac{\lambda\left(\left(\lambda^{2}\right)^{n+1}-1\right)}{\lambda^{2}-1}+\frac{\mu\left(\left(\mu^{2}\right)^{n+1}-1\right)}{\mu^{2}-1}
\end{aligned}
$$

[^2]$\lambda^{2}-1=3+2 \sqrt{2}-1=2(1+\sqrt{2})=2 \lambda$, and similarly $\mu^{2}-1=2 \mu$. We now have:
\[

$$
\begin{aligned}
\sum_{r=0}^{n} a_{2 r+1} & =\frac{\lambda\left(\left(\lambda^{2}\right)^{n+1}-1\right)}{\lambda^{2}-1}+\frac{\mu\left(\left(\mu^{2}\right)^{n+1}-1\right)}{\mu^{2}-1} \\
& =\frac{X\left(\left(\lambda^{2}\right)^{n+1}-1\right)}{2 X}+\frac{\mu\left(\left(\mu^{2}\right)^{n+1}-1\right)}{2 \mu} \\
& =\frac{1}{2}\left(\left(\lambda^{n+1}\right)^{2}+\left(\mu^{n+1}\right)^{2}-2\right)
\end{aligned}
$$
\]

Which - as in part (ii) - is equal to $\frac{1}{2}\left(b_{n+1}\right)^{2}$ if n is odd and $\frac{1}{2}\left(a_{n+1}\right)^{2}$ if n is even.

$$
\begin{array}{rlr}
\left(\sum_{r=0}^{n} a_{r}\right)^{2}-\sum_{r=0}^{n} a_{2 r+1} & =\frac{1}{2}\left(b_{n+1}\right)^{2}-\frac{1}{2}\left(b_{n+1}\right)^{2}=0 & \text { if } n \text { is odd } \\
\left(\sum_{r=0}^{n} a_{r}\right)^{2}-\sum_{r=0}^{n} a_{2 r+1} & =\frac{1}{2}\left(b_{n+1}\right)^{2}-\frac{1}{2}\left(a_{n+1}\right)^{2} & \\
& =\frac{1}{2}\left(\left(\lambda^{n+1}\right)^{2}+\left(\mu^{n+1}\right)^{2}-2(\lambda \mu)^{n+1}\right) & \\
& -\frac{1}{2}\left(\left(\lambda^{n+1}\right)^{2}+\left(\mu^{n+1}\right)^{2}+2(\lambda \mu)^{n+1}\right) & \\
& =-2(\lambda \mu)^{n+1} & \\
& =-2 \times(-1)^{n+1}=2 & \text { if } n \text { is even. }
\end{array}
$$

[^0]: ${ }^{1}$ Without Loss Of Generality

[^1]: ${ }^{2}$ The equation $4 y^{2}=-1$ has no real solutions, and since we want (x, y) to be a point in the Cartesian plane, we want y to be real.

[^2]: ${ }^{3}$ What I did, and what I would expect a lot of people to do, is expand $\left(b_{n+1}\right)^{2}=\left(\lambda^{n+1}-\mu^{n+1}\right)^{2}$ and try and figure out how it is related to what I have already done. Then I wrote up a solution "going the correct way".

