1 The first 10 cubes are 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000.

(i) Substituting $y = k - x$ gives:

\[
x^3 + (k - x)^3 = k z^3
\]
\[
x^3 + k^3 - 3k^2 x + 3kx^2 - x^3 = k z^3
\]
\[
k^2 - 3kx + 3x^2 = z^3 \quad \text{since } k > 0.
\]

Note that we need to state something like $k \neq 0$ before we divide by k.

We then have:

\[
\frac{4z^3 - k^2}{3} = \frac{4(k^2 - 3kx + 3x^2) - k^2}{3}
\]
\[
= \frac{3k^2 - 12kx + 12x^2}{3}
\]
\[
= k^2 - 4kx + 4x^2
\]
\[
= (k - 2x)^2.
\]

You can if you like use $k = y + x$ to re-write the last line as $(y - x)^2$.

A perfect square is greater than or equal to 0, so we have $4z^3 - k^2 \geq 0 \implies z^3 \geq \frac{1}{4}k^2$.

For the other part of the inequality use:

\[
z^3 = k^2 - 3kx + 3x^2
\]
\[
= k^2 - 3x(k - x)
\]
\[
= k^2 - 3xy
\]

and as $x, y > 0$ we have $z^3 < k^2$. Therefore we have $\frac{1}{4}k^2 \leq z^3 < k^2$.

When $k = 20$ we have $100 \leq z^3 < 400$, so z must be 5, 6 or 7 (this is why you were asked to work out the first few cubes!). Testing each of these in $\frac{4z^3 - k^2}{3}$ shows that only $z = 7$ results in a perfect square. Using $\frac{4z^3 - k^2}{3} = 18^2 = (y - x)^2$ and $x + y = k = 20$, and assuming WLOG\(^1\) that $y \geq x$, we can solve the simultaneous equations to get $x = 1, y = 19$. You can then check that $1^3 + 19^3 = 20 \times 7^3$ if you wish.

\(^1\)Without Loss Of Generality
(ii) Follow the same method as part (i)!

Substituting \(y = z^2 - x \) gives:

\[
\begin{align*}
 x^3 + (z^2 - x)^3 &= kz^3 \\
 x^6 + z^6 - 3z^4x + 3z^2x^2 - x^3 &= kz^3 \\
 z^4 - 3z^2x + 3x^2 &= kz & \text{ since } z > 0.
\end{align*}
\]

We are then looking for something that will give us a perfect square. Comparison with part (i) leads us to:

\[
\begin{align*}
 \frac{4kz - z^4}{3} &= \frac{4(z^4 - 3z^2x + 3x^2) - z^4}{3} \\
 &= z^4 - 4z^2x + 4x^2 \\
 &= (z^2 - 2x)^2 \\
 &= (y - x)^2.
\end{align*}
\]

We then have \(4kz - z^4 \geq 0 \implies z^3 \leq 4k \) (since \(z > 0 \) we can divide by \(z \) without changing the inequality direction).

We also have:

\[
\begin{align*}
 kz &= z^4 - 3z^2x + 3x^2 \\
 &= z^4 - 3x(z^2 - x) \\
 &= z^4 - 3xy
\end{align*}
\]

and as \(x, y > 0 \) we have \(kz < z^4 \implies k < z^3 \). Hence we have \(k < z^3 \leq 4k \). With \(k = 19 \) this gives \(19 < z^3 \leq 76 \) and so \(z = 3 \) or \(4 \). Both of these give perfect squares for \(\frac{4kz - z^4}{3} = (y - x)^2 \).

\(z = 3 \) gives \(x + y = z^2 = 9 \) and \((y - x)^2 = 49 \), so \(y = 8 \) and \(x = 1 \).

\(z = 4 \) gives \(x + y = z^2 = 16 \) and \((y - x)^2 = 16 \), so \(y = 10 \) and \(x = 6 \).

Again, you can check that these solve \(x^3 + y^3 = kz^3 \).
It is helpful to define a coordinate system for the tetrahedron. Let the line \(AB \) be on the \(x \)-axis so that the midpoint of \(AB \) is at the origin. This means that we have \(A = (-\frac{1}{2}, 0, 0) \) and \(B = (\frac{1}{2}, 0, 0) \). Using Pythagoras' theorem in \(\triangle AOC \) gives \(C = (0, \frac{\sqrt{3}}{2}, 0) \).

(i) The centroid of \(\triangle ABC \) is a third of the distance from the centre of \(AB \) to \(C \) which gives \(P = (0, \frac{\sqrt{3}}{6}, 0) \). You can then use Pythagoras' theorem to find lengths \(PA \) and \(PD \):

\[
PA^2 = \frac{1}{4} + \frac{3}{36} = \frac{1}{3}
\]

\[
PD^2 = 1 - \frac{1}{3} = \frac{2}{3}
\]

and hence \(PD = \sqrt{\frac{2}{3}} \).

(ii) The angle between two adjacent faces is given by, e.g., \(\angle DOC = \angle DOP \). Using the right-angled triangle \(\triangle DOP \) gives \(\cos(\angle DOP) = \frac{\frac{1}{6}}{\frac{\sqrt{3}}{2}} = \frac{1}{3} \).

(iii) The centre of the sphere, \(S \), must lie on the line \(DP \) by symmetry. Let \(X \) be where the sphere meets the face \(ABD \).

We know that \(OP = OX = \frac{\sqrt{3}}{6} \), \(OD = \frac{\sqrt{3}}{2} \) and \(DP = \frac{\sqrt{6}}{3} \). Using the right-angled triangle \(\triangle DXS \) we have:

\[
DS^2 = XS^2 + XD^2
\]

\[
\left(\frac{\sqrt{6}}{3} - r \right)^2 = r^2 + \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} \right)^2
\]

\[
\frac{6}{9} - \frac{2\sqrt{6}}{3} r + r^2 = r^2 + \frac{1}{3}
\]

\[
\frac{2\sqrt{6}}{3} r = \frac{1}{3}
\]

\[
r = \frac{1}{2\sqrt{6}} = \frac{\sqrt{6}}{12}
\]
The curve $xy = v$ is symmetric in $y = x$ (which we can see as if we interchange x and y we get the same curve) and $y = -x$ (which we can see by using $x' = -y$ and $y' = -x$).

The curve $x^4 + y^4 = u$ is symmetric in $y = x$, $y = -x$, the x-axis (which can be seen by substituting $y' = -y$) and the y-axis (substitute $x' = -x$).

If $A = (\alpha, \beta)$ then $B = (\beta, \alpha)$, $C = (-\alpha, -\beta)$ and $D = (-\beta, -\alpha)$.

To show that $ABCD$ is a quadrilateral, you can show that AB is perpendicular to BC. We have:

$$m_{AB} \times m_{BC} = \frac{\beta - \alpha}{\alpha - \beta} \times \frac{\alpha + \beta}{\beta + \alpha} = -1.$$

Therefore AB and BC are perpendicular. You can then use the same technique to show that all of the four sides are perpendicular, or you can use symmetry in $y = x$ and $y = -x$ to show this.

To find the area:

$$AB^2 = (\alpha - \beta)^2 + (\beta - \alpha)^2 = 2(\alpha - \beta)^2$$

$$BC^2 = (\beta + \alpha)^2 + (\alpha + \beta)^2 = 2(\alpha + \beta)^2.$$

Remembering that $\alpha > \beta$ the area is:

$$AB \times BC = \sqrt{2}(\alpha - \beta) \times \sqrt{2}(\alpha + \beta) = 2(\alpha^2 - \beta^2).$$

The question asks us for the area in terms of u and v. Since α and β satisfy the equations of the curves we have $\alpha^4 + \beta^4 = u$ and $\alpha\beta = v$.

Considering $(\alpha^2 - \beta^2)^2$ gives us:

$$(\alpha^2 - \beta^2)^2 = \alpha^4 - 2\alpha^2\beta^2 + \beta^4$$

$$= \alpha^4 + \beta^4 - 2(\alpha\beta)^2$$

$$= u - 2v^2$$

So the area is $2\sqrt{u - 2v^2}$.

Then for $u = 81$ and $v = 4$ the area is $2\sqrt{81 - 32} = 2\sqrt{49} = 14$.

STEP 2 Miscellaneous: Solutions 4
We can deduce that
\[p(x) - 1 = (x - 1)^5 \times q(x) \]
(*)
where \(q(x) \) is a quartic.

(i) Using (*) we have \(p(1) - 1 = (1 - 1)^5 \times q(1) \), so \(p(1) = 1 \).

(ii) Differentiating (*) gives:
\[
p'(x) = 5(x - 1)^4 \times q(x) + (x - 1)^5 \times q'(x) \\
= (x - 1)^4(5q(x) + (x - 1)q'(x))
\]
and therefore \(p'(x) \) is divisible by \((x - 1)^4 \).

(iii) In a similar way to before we can write \(p(x) + 1 = (x + 1)^5 \times q_2(x) \). Substituting in \(x = -1 \) gives \(p(-1) = -1 \) and differentiating can be used to show that \(p'(x) \) is divisible by \((x + 1)^4 \).

We can now write \(p'(x) = k(x - 1)^4(x + 1)^4 = k(x^2 - 1)^4 = k(x^8 - 4x^6 + 6x^4 - 4x^2 + 1) \).

Integrating gives:
\[
p(x) = k\left(\frac{1}{5}x^9 - \frac{4}{7}x^7 + \frac{6}{5}x^5 - \frac{4}{3}x^3 + x\right) + c
\]
and using \(p(1) = 1 \) and \(p(-1) = -1 \) we have:
\[
k\left(\frac{1}{5} - \frac{4}{7} + \frac{6}{5} - \frac{4}{3} + 1\right) + c = 1 \\
k\left(-\frac{1}{9} + \frac{4}{7} - \frac{6}{5} + \frac{4}{3} + 1\right) + c = -1
\]

Adding these two together gives \(c = 0 \) and then the first one gives us:
\[
k\left(\frac{35}{315} - \frac{180}{315} + \frac{378}{315} - \frac{420}{315} + \frac{315}{315}\right) = 1 \implies k = \frac{315}{128}.
\]

So \(p(x) = \frac{315}{128}\left(\frac{1}{5}x^9 - \frac{4}{7}x^7 + \frac{6}{5}x^5 - \frac{4}{3}x^3 + x\right) \).
\[F_3 = 2, \ F_4 = 3, \ F_5 = 5, \ F_6 = 8, \ F_7 = 13, \ F_8 = 21, \ F_9 = 34 \text{ and } F_{10} = 55. \]

(i) We have \(F_i = F_{i-1} + F_{i-2} \) and, as long as \(i \geq 4 \), we have \(F_{i-2} < F_{i-1} \) (when \(i = 3 \) we have equality as \(F_1 = F_2 \)). Hence we have \(F_i < 2F_{i-1} \) and so \(\frac{1}{F_i} > \frac{1}{2F_{i-1}} \). We also have \(\frac{1}{F_{i-1}} > \frac{1}{2F_{i-2}} \) (if \(i \geq 5 \)) and so \(\frac{1}{F_i} > \frac{1}{4F_{i-2}} \) etc.

We now have:

\[
S = \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \cdots \\
S > \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{2F_4} + \frac{1}{2F_5} + \frac{1}{2F_6} + \cdots \\
S > \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{2F_3} + \frac{1}{4F_4} + \frac{1}{8F_5} + \cdots \\
S > \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \right)
\]

Using the values of \(F_1, F_2, F_3 \) and the sum of an infinite GP gives us:

\[S > 1 + 1 + \frac{1}{2} \times 2 = 3. \]

In a similar way to above we have \(F_i > 2F_{i-2} \) (for \(i \geq 4 \)) and so \(\frac{1}{F_i} < \frac{1}{2F_{i-2}} \). This is slightly different to before as you have to split up odd and even terms.

\[
S = \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \cdots \\
S = \left(\frac{1}{F_1} + \frac{1}{F_2} \right) + \left(\frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \cdots \right) + \left(\frac{1}{F_3} + \frac{1}{F_5} + \frac{1}{F_7} + \cdots \right) \\
S < \left(\frac{1}{F_1} + \frac{1}{F_2} \right) + \left(\frac{1}{F_4} + \frac{1}{2F_4} + \frac{1}{4F_4} + \cdots \right) + \left(\frac{1}{F_3} + \frac{1}{2F_3} + \frac{1}{4F_3} + \cdots \right) \\
S < 1 + 1 + \frac{1}{3} \times 2 + \frac{1}{2} \times 2 = \frac{32}{3}
\]

(ii) For this part, use the same approach but take more terms before using the geometric series.

\[
S = \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \cdots \\
S > \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots \right) \\
S > 1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{5}{2} \times 2 = 1 + 1 + \frac{37}{30}
\]

Hence \(S > \frac{37}{30} > \frac{36}{30} = 3.2 \)
And for the upper limit:

\[S = \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} + \frac{1}{F_5} + \frac{1}{F_6} + \ldots \]

\[S = \left(\frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} \right) + \left(\frac{1}{F_5} + \frac{1}{F_7} + \ldots \right) + \left(\frac{1}{F_6} + \frac{1}{F_8} + \ldots \right) \]

\[S < \left(\frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_3} + \frac{1}{F_4} \right) + \frac{1}{F_5} \left(1 + \frac{1}{2} + \ldots \right) + \frac{1}{F_6} \left(1 + \frac{1}{2} + \ldots \right) \]

\[S < 1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} \times 2 + \frac{1}{8} \times 2 \]

and so \(S < 3\frac{29}{60} < 3\frac{1}{2} \).
6 (i) Setting \(a = 1, \ b = -1, \ x_n = x_{n+1} = x\) and \(y_n = y_{n+1} = y\) gives the simultaneous equations:
\[
\begin{align*}
x &= x^2 - y^2 + 1 \\
y &= 2xy + 1
\end{align*}
\]
Using the second equation we have \(x = \frac{y - 1}{2y}\), which we can substitute into the first equation to get:
\[
\begin{align*}
y - 1 &= \left(\frac{y - 1}{2y}\right)^2 - y^2 + 1 \\
2y(y - 1) &= (y - 1)^2 - 4y^2 \times y^2 + 4y^2 \\
2y^2 - 2y &= y^2 - 2y + 1 - 4y^4 + 4y^2 \\
4y^4 - 3y^2 - 1 &= 0 \\
(y - 1)(4y^3 + 4y^2 + y + 1) &= 0 \\
(y - 1)(y + 1)(4y^2 + 1) &= 0
\end{align*}
\]
Therefore \(y = 1\) or \(y = -1^2\). Using \(x = \frac{y - 1}{2y}\) gives the values as \((x_1, y_1) = (0, 1)\) and \((1, -1)\).

(ii) Taking \((x_1, y_1) = (-1, 1)\) gives \((x_2, y_2) = (a, b)\) and \((x_3, y_3) = (a^2 - b^2 + a, 2ab + b + 2)\). If the sequence is to have period 2 then we need \((x_1, y_1) = (x_3, y_3) \neq (x_2, y_2)\).

Using \((x_1, y_1) = (x_3, y_3)\) we have:
\[
\begin{align*}
a^2 - b^2 + a &= -1 \\
2ab + b + 2 &= 1
\end{align*}
\]
Similarly to before, we have \(a = \frac{-b - 1}{2b}\) and so:
\[
\begin{align*}
\left(\frac{-b - 1}{2b}\right)^2 - b^2 - \frac{b + 1}{2b} &= -1 \\
(-b - 1)^2 - 4b^4 - 2b(b + 1) &= -4b^2 \\
b^2 + 2b + 1 - 4b^4 - 2b^2 - 2b &= -4b^2 \\
4b^4 - 3b^2 - 1 &= 0
\end{align*}
\]
This last equation is identical to the one in \(y\) for part (i), so we have \(b = \pm 1\). This gives \((a, b) = (0, -1)\) or \((-1, 1)\), but since the second gives \((x_2, y_2) = (x_1, y_1)\) (i.e. sequence is constant, not period 2) we discard that one to leave us with just one solution, \((a, b) = (0, -1)\).

There is a neat solution here, where you can spot that if you let \(a = -x\) and \(b = -y\) you get the same equations as in part (i), which means you can deduce the values of \(a\) and \(b\) without solving the simultaneous equations.

2The equation \(4y^2 = -1\) has no real solutions, and since we want \((x, y)\) to be a point in the Cartesian plane, we want \(y\) to be real.
(i) The binomial expansion gives:

\[
\left(1 + \frac{k}{100}\right)^{\frac{1}{2}} = 1 + \frac{1}{2} \times \left(\frac{k}{100}\right) + \frac{1}{2!} \times \frac{1}{2} \times -\frac{1}{2} \times \left(\frac{k}{100}\right)^{2} + \frac{1}{3!} \times \frac{1}{2} \times -\frac{1}{2} \times -\frac{3}{2} \times \left(\frac{k}{100}\right)^{3} + \ldots
\]

\[\approx 1 + \frac{k}{200} - \frac{k^{2}}{80000} + \frac{k^{3}}{16000000} \]

(a) Substituting \(k = 8\) gives:

\[
\left(1 + \frac{8}{100}\right)^{\frac{1}{2}} = \left(\frac{108}{100}\right)^{\frac{1}{2}} = \left(\frac{3 \times 36}{100}\right)^{\frac{1}{2}} = \frac{6}{10} \times \sqrt{3}
\]

Using the binomial expansion (with \(k = 8\)) gives:

\[
\frac{6}{10} \times \sqrt{3} \approx 1 + \frac{8}{200} - \frac{8 \times 8}{80000} + \frac{8 \times 8 \times 8}{16000000} = 1 + \frac{4}{100} - \frac{8}{10000} + \frac{8}{1000000} = 1.040032 - 0.0008 = 1.039232
\]

Then the approximation for \(\sqrt{3}\) is given by:

\[
\sqrt{3} \approx \frac{1.039232}{0.6} = \frac{10.39232}{6}
\]

Carrying out the division gives \(\sqrt{3} \approx 1.73205\).

(b) Here we need to find a suitable value of \(k\), and remember that we want \(k\) to be small in order to get a good approximation. Comparing to the previous part, we want \(100 + k = a^{2} \times 6\). Starting with \(a = 3\) we have:

\[
3^{2} \times 6 = 54 \implies k = -46
\]
\[
4^{2} \times 6 = 96 \implies k = -4
\]
\[
5^{2} \times 6 = 150 \implies k = 50
\]
$k = 50$ is not a great choice as it is not small, so take $k = -4$.

Substituting $k = -4$ gives:

$$
\left(\frac{96}{100} \right)^{\frac{1}{2}} = \frac{4}{10} \times \sqrt{6}
\approx 1 - \frac{4}{200} - \frac{4 \times 4}{80000} - \frac{4 \times 4 \times 4}{16000000}
= 1 - \frac{2}{100} - \frac{2}{10000} - \frac{4}{1000000}
= 1 - 0.020204
= 0.979796
$$

And so we have $\sqrt{6} \approx 0.979796 \div 4$, i.e. $\sqrt{6} \approx 2.44949$.

(ii) The first two terms of the binomial expansion of $\left(1 + \frac{k}{1000}\right)^{\frac{1}{3}}$ gives us:

$$
\left(1 + \frac{k}{1000}\right)^{\frac{1}{3}} \approx 1 + \frac{k}{3000}.
$$

By comparing to the previous part, we want to find a value of k so that $1000 + k = a^3 \times 3$, where k is small compared to 1000. The value of a which gives the smallest k is $a = 7$, which gives $1000 + k = 1029 \implies k = 29$. We then have:

$$
\left(\frac{1029}{1000} \right)^{\frac{1}{3}} \approx 1 + \frac{29}{3000}
\frac{7}{10} \times \sqrt[3]{3} \approx \frac{3029}{3000}
\sqrt[3]{3} \approx \frac{3029}{3000} \times \frac{10}{7} \quad \text{and so}
\sqrt[3]{3} \approx \frac{3029}{2100} \quad \text{as required.}$$
You should start by drawing a large and clear diagram, maybe something like below:

Then we have $CX = b - r$ and $BX = c - r$ (adjacent sides of a kite). Hence $a = (b - r) + (c - r)$ and so $2r = b + c - a$.

We now have another diagram with the circumcircle shown as well as the incircle.

Since $\triangle ABC$ is right-angled, BC is a diameter of S_2. Hence the radius of S_2 satisfies $2r_2 = a$.

The area of S_2 is πr_2^2 and the area between S_1 and the triangle is $\frac{1}{2}bc - \pi r^2$. Using the given fact about the ratio of these we have:

$$R\pi r_2^2 = \frac{1}{2}bc - \pi r^2$$
The result we are trying to obtain does not contain \(r \) or \(r^2 \), so we substitute for these.

\[
R\pi \left(\frac{a}{2} \right)^2 = \frac{1}{2} bc - \pi \left(\frac{b + c - a}{2} \right)^2 \\
R\pi = \frac{2bc}{a^2} - \pi \left(\frac{b + c - a}{a} \right)^2 \\
R\pi = \frac{2bc}{a^2} - \pi (q - 1)^2
\]

This is starting to look promising, but the \(\frac{2bc}{a^2} \) needs writing in terms of \(q \). We have:

\[
q^2 = \left(\frac{b + c}{a} \right)^2 \\
= \frac{b^2 + c^2 + 2bc}{a^2} \\
= \frac{a^2 + 2bc}{a^2} \quad \text{using Pythagoras’ theorem} \\
= 1 + \frac{2bc}{a^2}
\]

So we now have:

\[
R\pi = q^2 - 1 - \pi (q - 1)^2 \\
= q^2 - 1 - \pi(q^2 - 2q + 1) \\
= q^2 - 1 - \pi q^2 + 2\pi q - \pi \\
= -(\pi - 1)q^2 + 2\pi q - (\pi + 1) \quad \text{as required}
\]

Note that this is a quadratic in \(q \), and will have a maximum when \(\frac{d}{dq} (\pi R) = 0 \), i.e. when

\[
q = \frac{2\pi}{2(\pi - 1)} = \frac{\pi}{\pi - 1}. \quad \text{This gives}
\]

\[
\pi R_{\max} = -(\pi - 1) \left(\frac{\pi}{\pi - 1} \right)^2 + 2\pi \left(\frac{\pi}{\pi - 1} \right) - (\pi + 1) \\
= -\frac{\pi^2}{\pi - 1} + \frac{2\pi^2}{\pi - 1} - (\pi + 1) \\
= \frac{\pi^2}{\pi - 1} - \frac{(\pi + 1)(\pi - 1)}{\pi - 1} \\
= \frac{\pi^2 - \pi^2 + 1}{\pi - 1} \\
= \frac{1}{\pi - 1}
\]

And so since \(R_{\max} = \frac{1}{\pi(\pi - 1)} \) we have \(R \leq \frac{1}{\pi(\pi - 1)} \).
One stumbling block is not reading all the information in the “stem”! Since you are told that $\lambda = 1 + \sqrt{2}$ you know that $\lambda - 1 = \sqrt{2}$ etc.

We have:

$$\sum_{r=0}^{n} b_r = (\lambda^0 - \mu^0) + (\lambda^1 - \mu^1) + (\lambda^2 - \mu^2) + \ldots + (\lambda^n - \mu^n)$$

$$= (1 + \lambda^1 + \lambda^2 + \ldots + \lambda^n) - (1 + \mu^1 + \mu^2 + \ldots + \mu^n)$$

$$= \frac{\lambda^{n+1} - 1}{\lambda - 1} - \frac{\mu^{n+1} - 1}{\mu - 1}$$

$$= \frac{\lambda^{n+1} - 1}{\sqrt{2}} - \frac{\mu^{n+1} - 1}{-\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} (\lambda^{n+1} - \mu^{n+1}) - 2 \times \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} a_{n+1} - \sqrt{2}$$

Similarly:

$$\sum_{r=0}^{n} a_r = (\lambda^0 + \mu^0) + (\lambda^1 + \mu^1) + (\lambda^2 + \mu^2) + \ldots + (\lambda^n + \mu^n)$$

$$= (1 + \lambda^1 + \lambda^2 + \ldots + \lambda^n) + (1 + \mu^1 + \mu^2 + \ldots + \mu^n)$$

$$= \frac{\lambda^{n+1} - 1}{\lambda - 1} + \frac{\mu^{n+1} - 1}{\mu - 1}$$

$$= \frac{\lambda^{n+1} - 1}{\sqrt{2}} + \frac{\mu^{n+1} - 1}{-\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} (\lambda^{n+1} - \mu^{n+1})$$

$$= \frac{1}{\sqrt{2}} b_{n+1}$$

(ii) Here we have a “nested sum”. Start by evaluating the “inner sum”.

$$\sum_{m=0}^{2n} \left(\sum_{r=0}^{m} a_r \right) = \sum_{m=0}^{2n} \left(\frac{1}{\sqrt{2}} b_{m+1} \right)$$

$$= \sum_{m=0}^{2n+1} \left(\frac{1}{\sqrt{2}} b_{m} \right) \quad \text{since } b_0 = 0$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} a_{(2n+1)+1} - \sqrt{2} \right)$$

$$= \frac{1}{2} (a_{2n+2} - 2)$$

$$= \frac{1}{2} (\lambda^{2n+2} + \mu^{2n+2} - 2)$$
We are trying to get something like \((b_{n+1})^2\). Noting that \(\lambda \times \mu = 1 - 2 = -1\), and using the fact that \(n\) is odd, so that \(n + 1\) is even and \((\lambda\mu)^{n+1} = 1\) we have:

\[
\sum_{m=0}^{2n} \left(\sum_{r=0}^{m} a_r \right) = \frac{1}{2} \left(\lambda^{2n+2} + \mu^{2n+2} - 2 \right)
\]

\[
= \frac{1}{2} \left((\lambda^{n+1})^2 + (\mu^{n+1})^2 - 2 (\lambda\mu)^{n+1} \right)
\]

\[
= \frac{1}{2} (\lambda^{n+1} - \mu^{n+1})^2
\]

\[
= \frac{1}{2} (b_{n+1})^2.
\]

When \(n\) is even, \(n + 1\) is odd and \((\lambda\mu)^{n+1} = -1\). Then we have:

\[
\sum_{m=0}^{2n} \left(\sum_{r=0}^{m} a_r \right) = \frac{1}{2} \left(\lambda^{2n+2} + \mu^{2n+2} - 2 \right)
\]

\[
= \frac{1}{2} \left((\lambda^{n+1})^2 + (\mu^{n+1})^2 + 2 (\lambda\mu)^{n+1} \right)
\]

\[
= \frac{1}{2} (\lambda^{n+1} + \mu^{n+1})^2
\]

\[
= \frac{1}{2} (a_{n+1})^2.
\]

(iii) From part (i) we have \(\left(\sum_{r=0}^{n} a_r \right)^2 = \left(\frac{1}{\sqrt{2}} b_{n+1} \right)^2 = \frac{1}{2} (b_{n+1})^2\).

We also need:

\[
\sum_{r=0}^{n} a_{2r+1} = a_1 + a_3 + a_5 + \ldots + a_{2n+1}
\]

\[
= (\lambda + \lambda^3 + \lambda^5 + \ldots + \lambda^{2n+1}) + (\mu + \mu^3 + \mu^5 + \ldots + \mu^{2n+1})
\]

\[
= \lambda \left(1 + \lambda^2 + (\lambda^2)^2 + \ldots + (\lambda^2)^n \right) + \mu \left(1 + \mu^2 + (\mu^2)^2 + \ldots + (\mu^2)^n \right)
\]

\[
= \frac{\lambda \left((\lambda^2)^{n+1} - 1 \right)}{1 + \mu (\mu^2)^{n+1} - \mu^2 - 1}
\]

\[
= \frac{\lambda \left((\lambda^2)^{n+1} - 1 \right)}{\mu^2 - 1}
\]

\[
\text{What I did, and what I would expect a lot of people to do, is expand } (b_{n+1})^2 = (\lambda^{n+1} - \mu^{n+1})^2 \text{ and try and figure out how it is related to what I have already done. Then I wrote up a solution "going the correct way".}
\[
\lambda^2 - 1 = 3 + 2\sqrt{2} - 1 = 2(1 + \sqrt{2}) = 2\lambda, \text{ and similarly } \mu^2 - 1 = 2\mu. \text{ We now have:}
\]
\[
\sum_{r=0}^{n} a_{2r+1} = \frac{\lambda \left((\lambda^2)^{n+1} - 1 \right)}{\lambda^2 - 1} + \frac{\mu \left((\mu^2)^{n+1} - 1 \right)}{\mu^2 - 1}
\]
\[
= \frac{\lambda \left((\lambda^2)^{n+1} - 1 \right)}{2\lambda} + \frac{\mu \left((\mu^2)^{n+1} - 1 \right)}{2\mu}
\]
\[
= \frac{1}{2} \left((\lambda^{n+1})^2 + (\mu^{n+1})^2 - 2 \right)
\]

Which — as in part (ii) — is equal to \(\frac{1}{2} (b_{n+1})^2\) if \(n\) is odd and \(\frac{1}{2} (a_{n+1})^2\) if \(n\) is even.

\[
\left(\sum_{r=0}^{n} a_r \right)^2 - \sum_{r=0}^{n} a_{2r+1} = \frac{1}{2} (b_{n+1})^2 - \frac{1}{2} (b_{n+1})^2 = 0 \quad \text{if } n \text{ is odd}
\]
\[
\left(\sum_{r=0}^{n} a_r \right)^2 - \sum_{r=0}^{n} a_{2r+1} = \frac{1}{2} (b_{n+1})^2 - \frac{1}{2} (a_{n+1})^2
\]
\[
= \frac{1}{2} \left((\lambda^{n+1})^2 + (\mu^{n+1})^2 - 2 (\lambda\mu)^{n+1} \right) - \frac{1}{2} \left((\lambda^{n+1})^2 + (\mu^{n+1})^2 + 2 (\lambda\mu)^{n+1} \right)
\]
\[
= -2 (\lambda\mu)^{n+1}
\]
\[
= -2 \times (-1)^{n+1} = 2 \quad \text{if } n \text{ is even.}