Section A: Pure Mathematics

1 To nine decimal places, $\log _{10} 2=0.301029996$ and $\log _{10} 3=0.477121255$.
(i) Calculate $\log _{10} 5$ and $\log _{10} 6$ to three decimal places. By taking logs, or otherwise, show that

$$
5 \times 10^{47}<3^{100}<6 \times 10^{47} .
$$

Hence write down the first digit of 3^{100}.
(ii) Find the first digit of each of the following numbers: $2^{1000} ; 2^{10000}$; and 2^{100000}.

2 Show that the coefficient of x^{-12} in the expansion of

$$
\left(x^{4}-\frac{1}{x^{2}}\right)^{5}\left(x-\frac{1}{x}\right)^{6}
$$

is -15 , and calculate the coefficient of x^{2}.
Hence, or otherwise, calculate the coefficients of x^{4} and x^{38} in the expansion of

$$
\left(x^{2}-1\right)^{11}\left(x^{4}+x^{2}+1\right)^{5} .
$$

3 For any number x, the largest integer less than or equal to x is denoted by $[x]$. For example, $[3.7]=3$ and $[4]=4$.
Sketch the graph of $y=[x]$ for $0 \leqslant x<5$ and evaluate

$$
\int_{0}^{5}[x] \mathrm{d} x .
$$

Sketch the graph of $y=\left[\mathrm{e}^{x}\right]$ for $0 \leqslant x<\ln n$, where n is an integer, and show that

$$
\int_{0}^{\ln n}\left[\mathrm{e}^{x}\right] \mathrm{d} x=n \ln n-\ln (n!) .
$$

4 (i) Show that, for $0 \leqslant x \leqslant 1$, the largest value of $\frac{x^{6}}{\left(x^{2}+1\right)^{4}}$ is $\frac{1}{16}$.
(ii) Find constants A, B, C and D such that, for all x,

$$
\frac{1}{\left(x^{2}+1\right)^{4}}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{A x^{5}+B x^{3}+C x}{\left(x^{2}+1\right)^{3}}\right)+\frac{D x^{6}}{\left(x^{2}+1\right)^{4}} .
$$

(iii) Hence, or otherwise, prove that

$$
\frac{11}{24} \leqslant \int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{4}} \mathrm{~d} x \leqslant \frac{11}{24}+\frac{1}{16} .
$$

5 Arthur and Bertha stand at a point O on an inclined plane. The steepest line in the plane through O makes an angle θ with the horizontal. Arthur walks uphill at a steady pace in a straight line which makes an angle α with the steepest line. Bertha walks uphill at the same speed in a straight line which makes an angle β with the steepest line (and is on the same side of the steepest line as Arthur). Show that, when Arthur has walked a distance d, the distance between Arthur and Bertha is $2 d\left|\sin \frac{1}{2}(\alpha-\beta)\right|$. Show also that, if $\alpha \neq \beta$, the line joining Arthur and Bertha makes an angle ϕ with the vertical, where

$$
\cos \phi=\sin \theta \sin \frac{1}{2}(\alpha+\beta)
$$

6 Show that

$$
x^{2}-y^{2}+x+3 y-2=(x-y+2)(x+y-1)
$$

and hence, or otherwise, indicate by means of a sketch the region of the $x-y$ plane for which

$$
x^{2}-y^{2}+x+3 y>2 .
$$

Sketch also the region of the $x-y$ plane for which

$$
x^{2}-4 y^{2}+3 x-2 y<-2 .
$$

Give the coordinates of a point for which both inequalities are satisfied or explain why no such point exists.

7 Let

$$
\mathrm{f}(x)=a x-\frac{x^{3}}{1+x^{2}},
$$

where a is a constant. Show that, if $a \geqslant 9 / 8$, then $\mathrm{f}^{\prime}(x) \geqslant 0$ for all x.

8 Show that

$$
\int_{-1}^{1}\left|x \mathrm{e}^{x}\right| \mathrm{d} x=-\int_{-1}^{0} x \mathrm{e}^{x} \mathrm{~d} x+\int_{0}^{1} x \mathrm{e}^{x} \mathrm{~d} x
$$

and hence evaluate the integral.
Evaluate the following integrals:
(i) $\int_{0}^{4}\left|x^{3}-2 x^{2}-x+2\right| \mathrm{d} x$;
(ii) $\int_{-\pi}^{\pi}|\sin x+\cos x| d x$.

Section B: Mechanics

9 A child is playing with a toy cannon on the floor of a long railway carriage. The carriage is moving horizontally in a northerly direction with acceleration a. The child points the cannon southward at an angle θ to the horizontal and fires a toy shell which leaves the cannon at speed V. Find, in terms of a and g, the value of $\tan 2 \theta$ for which the cannon has maximum range (in the carriage).
If a is small compared with g, show that the value of θ which gives the maximum range is approximately

$$
\frac{\pi}{4}+\frac{a}{2 g}
$$

and show that the maximum range is approximately $\frac{V^{2}}{g}+\frac{V^{2} a}{g^{2}}$.

10 Three particles P_{1}, P_{2} and P_{3} of masses m_{1}, m_{2} and m_{3} respectively lie at rest in a straight line on a smooth horizontal table. P_{1} is projected with speed v towards P_{2} and brought to rest by the collision. After P_{2} collides with P_{3}, the latter moves forward with speed v. The coefficients of restitution in the first and second collisions are e and e^{\prime}, respectively. Show that

$$
e^{\prime}=\frac{m_{2}+m_{3}-m_{1}}{m_{1}} .
$$

Show that $2 m_{1} \geqslant m_{2}+m_{3} \geqslant m_{1}$ for such collisions to be possible.
If m_{1}, m_{3} and v are fixed, find, in terms of m_{1}, m_{3} and v, the largest and smallest possible values for the final energy of the system.

11 A rod $A B$ of length 0.81 m and mass 5 kg is in equilibrium with the end A on a rough floor and the end B against a very rough vertical wall. The rod is in a vertical plane perpendicular to the wall and is inclined at 45° to the horizontal. The centre of gravity of the rod is at G, where $A G=0.21 \mathrm{~m}$. The coefficient of friction between the rod and the floor is 0.2 , and the coefficient of friction between the rod and the wall is 1.0 . Show that the friction cannot be limiting at both A and B.
A mass of 5 kg is attached to the rod at the point P such that now the friction is limiting at both A and B. Determine the length of $A P$.

Section C: Probability and Statistics

12 I have k different keys on my key ring. When I come home at night I try one key after another until I find the key that fits my front door. What is the probability that I find the correct key in exactly n attempts in each of the following three cases?
(i) At each attempt, I choose a key that I have not tried before but otherwise each choice is equally likely.
(ii) At each attempt, I choose a key from all my keys and each of the k choices is equally likely.
(ii) At the first attempt, I choose from all my keys and each of the k choices is equally likely. Thereafter, I choose from the keys that I did not try the previous time but otherwise each choice is equally likely.

13 Every person carries two genes which can each be either of type A or of type B. It is known that 81% of the population are $A A$ (i.e. both genes are of type A), 18% are $A B$ (i.e. there is one gene of type A and one of type B) and 1% are $B B$. A child inherits one gene from each of its parents. If one parent is $A A$, the child inherits a gene of type A from that parent; if the parent is $B B$, the child inherits a gene of type B from that parent; if the parent is $A B$, the inherited gene is equally likely to be A or B.
(i) Given that two $A B$ parents have four children, show that the probability that two of them are $A A$ and two of them are $B B$ is $3 / 128$.
(ii) My mother is $A B$ and I am $A A$. Find the probability that my father is $A B$.

14 The random variable X is uniformly distributed on the interval $[-1,1]$. Find $\mathrm{E}\left(X^{2}\right)$ and $\operatorname{Var}\left(X^{2}\right)$.
A second random variable Y, independent of X, is also uniformly distributed on $[-1,1]$, and $Z=Y-X$. Find $\mathrm{E}\left(Z^{2}\right)$ and show that $\operatorname{Var}\left(Z^{2}\right)=7 \operatorname{Var}\left(X^{2}\right)$.

