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Section A: Pure Mathematics

1 A number of the form 1/N , where N is an integer greater than 1, is called a unit fraction.
Noting that

1

2
=

1

3
+

1

6
and 1

3
=

1

4
+

1

12
,

guess a general result of the form
1

N
=

1

a
+

1

b
(∗)

and hence prove that any unit fraction can be expressed as the sum of two distinct unit
fractions.
By writing (∗) in the form

(a−N)(b−N) = N2

and by considering the factors of N2, show that if N is prime, then there is only one way of
expressing 1/N as the sum of two distinct unit fractions.
Prove similarly that any fraction of the form 2/N , where N is prime number greater than 2,
can be expressed uniquely as the sum of two distinct unit fractions.

2 Prove that if (x− a)2 is a factor of the polynomial p(x), then p′(a) = 0. Prove a corresponding
result if (x− a)4 is a factor of p(x).
Given that the polynomial

x6 + 4x5 − 5x4 − 40x3 − 40x2 + 32x+ k

has a factor of the form (x− a)4, find k.

3 The lengths of the sides BC, CA, AB of the triangle ABC are denoted by a, b, c, respectively.
Given that

b = 8 + ϵ1, c = 3 + ϵ2, A = 1
3π + ϵ3,

where ϵ1, ϵ2, and ϵ3 are small, show that a ≈ 7 + η, where η =
(
13 ϵ1 − 2 ϵ2 + 24

√
3 ϵ3

)
/14.

Given now that

|ϵ1| ⩽ 2× 10−3, |ϵ2| ⩽ 4 · 9× 10−2, |ϵ3| ⩽
√
3× 10−3,

find the range of possible values of η.
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4 Prove that
(cos θ + i sin θ)(cosϕ+ i sinϕ) = cos(θ + ϕ) + i sin(θ + ϕ)

and that, for every positive integer n,

(cos θ + i sin θ)n = cosnθ + i sinnθ.

By considering (5− i)2(1 + i), or otherwise, prove that

arctan

(
7

17

)
+ 2arctan

(
1

5

)
=

π

4
.

Prove also that

3 arctan

(
1

4

)
+ arctan

(
1

20

)
+ arctan

(
1

1985

)
=

π

4
.

[Note that arctan θ is another notation for tan−1 θ.]

5 It is required to approximate a given function f(x), over the interval 0 ⩽ x ⩽ 1, by the linear
function λx, where λ is chosen to minimise∫ 1

0

(
f(x)− λx

)2
dx.

Show that
λ = 3

∫ 1

0
xf(x) dx.

The residual error, R, of this approximation process is such that

R2 =

∫ 1

0

(
f(x)− λx

)2
dx.

Show that
R2 =

∫ 1

0

(
f(x)

)2
dx− 1

3λ
2.

Given now that f(x) = sin(πx/n), show that (i) for large n, λ ≈ π/n and (ii) limn→∞R = 0.

Explain why, prior to any calculation, these results are to be expected.
[You may assume that, when θ is small, sin θ ≈ θ − 1

6θ
3 and cos θ ≈ 1− 1

2θ
2.]
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6 Show that
sin θ =

2t

1 + t2
, cos θ =

1− t2

1 + t2
,

1 + cos θ

sin θ
= tan(12π − 1

2θ),

where t = tan 1
2θ.

Use the substitution t = tan 1
2θ to show that, for 0 < α < 1

2π,∫ 1
2
π

0

1

1 + cosα sin θ
dθ =

α

sinα
,

and deduce a similar result for ∫ 1
2
π

0

1

1 + sinα cos θ
dθ .

7 The line l has vector equation r = λs, where

s = (cos θ +
√
3 ) i+ (

√
2 sin θ) j+ (cos θ −

√
3 ) k

and λ is a scalar parameter. Find an expression for the angle between l and the line r = µ(a i+ b j+ ck).
Show that there is a line m through the origin such that, whatever the value of θ, the acute
angle between l and m is π/6.
A plane has equation x− z = 4

√
3. The line l meets this plane at P . Show that, as θ varies,

P describes a circle, with its centre on m. Find the radius of this circle.

8 (i) Let y be the solution of the differential equation

dy

dx
+ 4xe−x2

(y + 3)
1
2 = 0 (x ⩾ 0),

that satisfies the condition y = 6 when x = 0. Find y in terms of x and show that y → 1
as x → ∞.

(ii) Let y be any solution of the differential equation

dy

dx
− xe6x

2
(y + 3)1−k = 0 (x ⩾ 0).

Find a value of k such that, as x → ∞, e−3x2
y tends to a finite non-zero limit, which you

should determine.
[The approximations, valid for small θ, sin θ ≈ θ and cos θ ≈ 1− 1

2 θ
2 may be assumed.]
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Section B: Mechanics

9 In an aerobatics display, Jane and Karen jump from a great height and go through a period
of free fall before opening their parachutes. While in free fall at speed v, Jane experiences
air resistance kv per unit mass but Karen, who spread-eagles, experiences air resistance
kv + (2k2/g)v2 per unit mass. Show that Jane’s speed can never reach g/k. Obtain the
corresponding result for Karen.
Jane opens her parachute when her speed is g/(3k). Show that she has then been in free
fall for time k−1 ln(3/2).
Karen also opens her parachute when her speed is g/(3k). Find the time she has then been
in free fall.

10 A long light inextensible string passes over a fixed smooth light pulley. A particle of mass
4 kg is attached to one end A of this string and the other end is attached to a second smooth
light pulley. A long light inextensible string BC passes over the second pulley and has a
particle of mass 2 kg attached at B and a particle of mass of 1 kg attached at C. The system
is held in equilibrium in a vertical plane. The string BC is then released from rest. Find the
accelerations of the two moving particles.
After T seconds, the end A is released so that all three particles are now moving in a vertical
plane. Find the accelerations of A, B and C in this second phase of the motion. Find also, in
terms of g and T , the speed ofAwhenB has moved through a total distance of 0.6gT 2 metres.

11 The string AP has a natural length of 1·5metres and modulus of elasticity equal to 5g newtons.
The end A is attached to the ceiling of a room of height 2 ·5 metres and a particle of mass
0·5 kg is attached to the end P . The end P is released from rest at a point 0·5 metres above
the floor and vertically below A. Show that the string becomes slack, but that P does not
reach the ceiling.
Show also that while the string is in tension, P executes simple harmonic motion, and that
the time in seconds that elapses from the instant when P is released to the instant when P
first returns to its original position is(

8

3g

)1
2

+

(
3

5g

)1
2 (

π − arccos(3/7)
)
.

[Note that arccosx is another notation for cos−1 x.]
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Section C: Probability and Statistics

12 Tabulated values of Φ(·), the cumulative distribution function of a standard normal variable,
should not be used in this question.
Henry the commuter lives in Cambridge and his working day starts at his office in London at
0900. He catches the 0715 train to King’s Cross with probability p, or the 0720 to Liverpool
Street with probability 1−p. Measured in minutes, journey times for the first train areN(55, 25)
and for the second are N(65, 16). Journey times from King’s Cross and Liverpool Street to
his office are N(30, 144) and N(25, 9), respectively. Show that Henry is more likely to be late
for work if he catches the first train.
Henry makes M journeys, where M is large. Writing A for 1−Φ(20/13) and B for 1−Φ(2),
find, in terms of A, B, M and p, the expected number, L, of times that Henry will be late and
show that for all possible values of p,

BM ⩽ L ⩽ AM.

Henry noted that in 3/5 of the occasions when he was late, he had caught the King’s Cross
train. Obtain an estimate of p in terms of A and B.
[A random variable is said to be N

(
µ, σ2

)
if it has a normal distribution with mean µ and

variance σ2.]

13 A group of biologists attempts to estimate the magnitude, N , of an island population of voles
(Microtus agrestis). Accordingly, the biologists capture a random sample of 200 voles, mark
them and release them. A second random sample of 200 voles is then taken of which 11 are
found to be marked. Show that the probability, pN , of this occurrence is given by

pN = k

(
(N − 200)!

)2
N !(N − 389)!

,

where k is independent of N .
The biologists then estimate N by calculating the value of N for which pN is a maximum.
Find this estimate.
All unmarked voles in the second sample are marked and then the entire sample is released.
Subsequently a third random sample of 200 voles is taken. Write down the probability that this
sample contains exactly j marked voles, leaving your answer in terms of binomial coefficients.
Deduce that

200∑
j=0

(
389

j

)(
3247

200− j

)
=

(
3636

200

)
.
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14 The random variables X1, X2, . . . , X2n+1 are independently and uniformly distributed on the
interval 0 ⩽ x ⩽ 1. The random variable Y is defined to be the median of X1, X2, . . . , X2n+1.
Given that the probability density function of Y is g(y), where

g(y) =

{
kyn(1− y)n if 0 ⩽ y ⩽ 1

0 otherwise

use the result ∫ 1

0
yr(1− y)s dy =

r!s!

(r + s+ 1)!

to show that k = (2n+ 1)!/(n!)2, and evaluate E(Y ) and Var (Y ). Hence show that, for any
given positive number d, the inequality

P
(
|Y − 1/2| < d/

√
n
)
< P

(
|X̄ − 1/2| < d/

√
n
)

holds provided n is large enough, where X̄ is the mean of X1, X2, . . . , X2n+1.
[You may assume that Y and X̄ are normally distributed for large n.]


