Section A: Pure Mathematics

1 Consider the equations

$$
\begin{aligned}
a x-y-z & =3, \\
2 a x-y-3 z & =7, \\
3 a x-y-5 z & =b,
\end{aligned}
$$

where a and b are given constants.
(i) In the case $a=0$, show that the equations have a solution if and only if $b=11$.
(ii) In the case $a \neq 0$ and $b=11$ show that the equations have a solution with $z=\lambda$ for any given number λ.
(iii) In the case $a=2$ and $b=11$ find the solution for which $x^{2}+y^{2}+z^{2}$ is least.
(iv) Find a value for a for which there is a solution such that $x>10^{6}$ and $y^{2}+z^{2}<1$.

2 Write down a value of θ in the interval $\frac{1}{4} \pi<\theta<\frac{1}{2} \pi$ that satisfies the equation

$$
4 \cos \theta+2 \sqrt{3} \sin \theta=5 .
$$

Hence, or otherwise, show that

$$
\pi=3 \arccos (5 / \sqrt{2} 8)+3 \arctan (\sqrt{3} / 2) .
$$

Show that

$$
\pi=4 \arcsin (7 \sqrt{2} / 10)-4 \arctan (3 / 4) .
$$

3 Prove that the cube root of any irrational number is an irrational number.
Let $u_{n}=5^{1 /\left(3^{n}\right)}$. Given that $\sqrt[3]{5}$ is an irrational number, prove by induction that u_{n} is an irrational number for every positive integer n.
Hence, or otherwise, give an example of an infinite sequence of irrational numbers which converges to a given integer m.
[An irrational number is a number that cannot be expressed as the ratio of two integers.]

4 The line $y=d$, where $d>0$, intersects the circle $x^{2}+y^{2}=R^{2}$ at G and H. Show that the area of the minor segment $G H$ is equal to

$$
\begin{equation*}
R^{2} \arccos \left(\frac{d}{R}\right)-d \sqrt{R^{2}-d^{2}} . \tag{*}
\end{equation*}
$$

In the following cases, the given line intersects the given circle. Determine how, in each case, the expression $(*)$ should be modified to give the area of the minor segment.
(i) Line: $y=c$; circle: $(x-a)^{2}+(y-b)^{2}=R^{2}$.
(ii) Line: $y=m x+c$; circle: $x^{2}+y^{2}=R^{2}$.
(iii) Line: $y=m x+c$; circle: $(x-a)^{2}+(y-b)^{2}=R^{2}$.

5 The position vectors of the points A, B and P with respect to an origin O are $a \mathbf{i}, b \mathbf{j}$ and $l \mathbf{i}+m \mathbf{j}+n \mathbf{k}$, respectively, where a, b, and n are all non-zero. The points E, F, G and H are the midpoints of $O A, B P, O B$ and $A P$, respectively. Show that the lines $E F$ and $G H$ intersect.

Let D be the point with position vector $d \mathbf{k}$, where d is non-zero, and let S be the point of intersection of $E F$ and $G H$. The point T is such that the mid-point of $D T$ is S. Find the position vector of T and hence find d in terms of n if T lies in the plane $O A B$.

6 The function f is defined by

$$
\mathrm{f}(x)=|x-1|,
$$

where the domain is \mathbf{R}, the set of all real numbers. The function $\mathrm{g}_{n}=\mathrm{f}^{n}$, with domain \mathbf{R}, so for example $\mathrm{g}_{3}(x)=\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))$. In separate diagrams, sketch graphs of $\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}$ and g_{4}. The function h is defined by

$$
\mathrm{h}(x)=\left|\sin \frac{\pi x}{2}\right|,
$$

where the domain is \mathbf{R}. Show that if n is even,

$$
\int_{0}^{n}\left(\mathrm{~h}(x)-\mathrm{g}_{n}(x)\right) \mathrm{d} x=\frac{2 n}{\pi}-\frac{n}{2} .
$$

7 Show that, if $n>0$, then

$$
\int_{e^{1 / n}}^{\infty} \frac{\ln x}{x^{n+1}} \mathrm{~d} x=\frac{2}{n^{2} \mathrm{e}} .
$$

You may assume that $\frac{\ln x}{x} \rightarrow 0$ as $x \rightarrow \infty$.
Explain why, if $1<a<b$, then

$$
\int_{b}^{\infty} \frac{\ln x}{x^{n+1}} \mathrm{~d} x<\int_{a}^{\infty} \frac{\ln x}{x^{n+1}} \mathrm{~d} x .
$$

Deduce that

$$
\sum_{n=1}^{N} \frac{1}{n^{2}}<\frac{\mathrm{e}}{2} \int_{\mathrm{e}^{1 / N}}^{\infty}\left(\frac{1-x^{-N}}{x^{2}-x}\right) \ln x \mathrm{~d} x
$$

where N is any integer greater than 1.

8 It is given that y satisfies

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}+k\left(\frac{t^{2}-3 t+2}{t+1}\right) y=0
$$

where k is a constant, and $y=A$ when $t=0$, where A is a positive constant. Find y in terms of t, k and A.
Show that y has two stationary values whose ratio is $(3 / 2)^{6 k} \mathrm{e}^{-5 k / 2}$.
Describe the behaviour of y as $t \rightarrow+\infty$ for the case where $k>0$ and for the case where $k<0$.

In separate diagrams, sketch the graph of y for $t>0$ for each of these cases.

Section B: Mechanics

$9 \quad A B$ is a uniform rod of weight W. The point C on $A B$ is such that $A C>C B$. The rod is in contact with a rough horizontal floor at A and with a cylinder at C. The cylinder is fixed to the floor with its axis horizontal. The rod makes an angle α with the horizontal and lies in a vertical plane perpendicular to the axis of the cylinder. The coefficient of friction between the rod and the floor is $\tan \lambda_{1}$ and the coefficient of friction between the rod and the cylinder is $\tan \lambda_{2}$.

Show that if friction is limiting both at A and at C, and $\alpha \neq \lambda_{2}-\lambda_{1}$, then the frictional force acting on the rod at A has magnitude

$$
\frac{W \sin \lambda_{1} \sin \left(\alpha-\lambda_{2}\right)}{\sin \left(\alpha+\lambda_{1}-\lambda_{2}\right)} .
$$

10 A bead B of mass m can slide along a rough horizontal wire. A light inextensible string of length 2ℓ has one end attached to a fixed point A of the wire and the other to B. A particle P of mass $3 m$ is attached to the mid-point of the string and B is held at a distance ℓ from A. The bead is released from rest.
Let a_{1} and a_{2} be the magnitudes of the horizontal and vertical components of the initial acceleration of P. Show by considering the motion of P relative to A, or otherwise, that $a_{1}=\sqrt{3} a_{2}$. Show also that the magnitude of the initial acceleration of B is $2 a_{1}$.
Given that the frictional force opposing the motion of B is equal to $(\sqrt{3} / 6) R$, where R is the normal reaction between B and the wire, show that the magnitude of the initial acceleration of P is $g / 18$.

11 A particle P_{1} is projected with speed V at an angle of elevation $\alpha\left(>45^{\circ}\right)$, from a point in a horizontal plane. Find T_{1}, the flight time of P_{1}, in terms of α, V and g. Show that the time after projection at which the direction of motion of P_{1} first makes an angle of 45° with the horizontal is $\frac{1}{2}(1-\cot \alpha) T_{1}$.
A particle P_{2} is projected under the same conditions. When the direction of the motion of P_{2} first makes an angle of 45° with the horizontal, the speed of P_{2} is instantaneously doubled. If T_{2} is the total flight time of P_{2}, show that

$$
\frac{2 T_{2}}{T_{1}}=1+\cot \alpha+\sqrt{1+3 \cot ^{2} \alpha} .
$$

Section C: Probability and Statistics

12 The life of a certain species of elementary particles can be described as follows. Each particle has a life time of T seconds, after which it disintegrates into X particles of the same species, where X is a random variable with binomial distribution $\mathrm{B}(2, p)$. A population of these particles starts with the creation of a single such particle at $t=0$. Let X_{n} be the number of particles in existence in the time interval $n T<t<(n+1) T$, where $n=1,2, \ldots$. Show that $\mathrm{P}\left(X_{1}=2\right.$ and $\left.X_{2}=2\right)=6 p^{4} q^{2}$, where $q=1-p$. Find the possible values of p if it is known that $\mathrm{P}\left(X_{1}=2 \mid X_{2}=2\right)=9 / 25$.
Explain briefly why $\mathrm{E}\left(X_{n}\right)=2 p \mathrm{E}\left(X_{n-1}\right)$ and hence determine $\mathrm{E}\left(X_{n}\right)$ in terms of p. Show that for one of the values of p found above $\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}\right)=0$ and that for the other $\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}\right)=$ $+\infty$.

13 The random variable X takes the values $k=1,2,3, \ldots$, and has probability distribution

$$
\mathrm{P}(X=k)=A \frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!},
$$

where λ is a positive constant. Show that $A=\left(1-\mathrm{e}^{-\lambda}\right)^{-1}$. Find the mean μ in terms of λ and show that

$$
\operatorname{Var}(X)=\mu(1-\mu+\lambda) .
$$

Deduce that $\lambda<\mu<1+\lambda$.
Use a normal approximation to find the value of $P(X=\lambda)$ in the case where $\lambda=100$, giving your answer to 2 decimal places.

14 The probability of throwing a 6 with a biased die is p. It is known that p is equal to one or other of the numbers A and B where $0<A<B<1$. Accordingly the following statistical test of the hypothesis $H_{0}: p=B$ against the alternative hypothesis $H_{1}: p=A$ is performed.
The die is thrown repeatedly until a 6 is obtained. Then if X is the total number of throws, H_{0} is accepted if $X \leqslant M$, where M is a given positive integer; otherwise H_{1} is accepted. Let α be the probability that H_{1} is accepted if H_{0} is true, and let β be the probability that H_{0} is accepted if H_{1} is true.
Show that $\beta=1-\alpha^{K}$, where K is independent of M and is to be determined in terms of A and B. Sketch the graph of β against α.

