Section A: Pure Mathematics

1 Consider the equations

$$ax-y-z = 3,$$

$$2ax-y-3z = 7,$$

$$3ax-y-5z = b,$$

where a and b are given constants.

- (i) In the case a = 0, show that the equations have a solution if and only if b = 11.
- (ii) In the case $a \neq 0$ and b = 11 show that the equations have a solution with $z = \lambda$ for any given number λ .
- (iii) In the case a = 2 and b = 11 find the solution for which $x^2 + y^2 + z^2$ is least.
- (iv) Find a value for *a* for which there is a solution such that $x > 10^6$ and $y^2 + z^2 < 1$.
- **2** Write down a value of θ in the interval $\frac{1}{4}\pi < \theta < \frac{1}{2}\pi$ that satisfies the equation

$$4\cos\theta + 2\sqrt{3}\sin\theta = 5$$
.

Hence, or otherwise, show that

$$\pi = 3 \arccos(5/\sqrt{28}) + 3 \arctan(\sqrt{3}/2)$$

Show that

$$\pi = 4 \arcsin(7\sqrt{2}/10) - 4 \arctan(3/4)$$
.

3 Prove that the cube root of any irrational number is an irrational number.

Let $u_n = 5^{1/(3^n)}$. Given that $\sqrt[3]{5}$ is an irrational number, prove by induction that u_n is an irrational number for every positive integer n.

Hence, or otherwise, give an example of an infinite sequence of irrational numbers which converges to a given integer m.

[An irrational number is a number that cannot be expressed as the ratio of two integers.]

4 The line y = d, where d > 0, intersects the circle $x^2 + y^2 = R^2$ at *G* and *H*. Show that the area of the minor segment *GH* is equal to

$$R^2 \arccos\left(\frac{d}{R}\right) - d\sqrt{R^2 - d^2}$$
 . (*)

In the following cases, the given line intersects the given circle. Determine how, in each case, the expression (*) should be modified to give the area of the minor segment.

- (i) Line: y = c; circle: $(x a)^2 + (y b)^2 = R^2$.
- (ii) Line: y = mx + c; circle: $x^2 + y^2 = R^2$.
- (iii) Line: y = mx + c; circle: $(x a)^2 + (y b)^2 = R^2$.
- **5** The position vectors of the points A, B and P with respect to an origin O are $a\mathbf{i}$, $b\mathbf{j}$ and $l\mathbf{i} + m\mathbf{j} + n\mathbf{k}$, respectively, where a, b, and n are all non-zero. The points E, F, G and H are the midpoints of OA, BP, OB and AP, respectively. Show that the lines EF and GH intersect.

Let *D* be the point with position vector $d\mathbf{k}$, where *d* is non-zero, and let *S* be the point of intersection of *EF* and *GH*. The point *T* is such that the mid-point of *DT* is *S*. Find the position vector of *T* and hence find *d* in terms of *n* if *T* lies in the plane *OAB*.

6 The function f is defined by

$$\mathbf{f}(x) = |x - 1| \;,$$

where the domain is \mathbf{R} , the set of all real numbers. The function $g_n = f^n$, with domain \mathbf{R} , so for example $g_3(x) = f(f(f(x)))$. In separate diagrams, sketch graphs of g_1 , g_2 , g_3 and g_4 . The function h is defined by

$$\mathbf{h}(x) = \left| \sin \frac{\pi x}{2} \right| \;,$$

where the domain is \mathbf{R} . Show that if n is even,

$$\int_0^n \left(\mathbf{h}(x) - \mathbf{g}_n(x) \right) \mathrm{d}x = \frac{2n}{\pi} - \frac{n}{2} \; .$$

Paper II, 2003 September 26, 2014

7 Show that, if n > 0, then

$$\int_{e^{1/n}}^{\infty} \frac{\ln x}{x^{n+1}} \, \mathrm{d}x = \frac{2}{n^2 \mathrm{e}} \; .$$

You may assume that $\frac{\ln x}{x} \to 0$ as $x \to \infty$. Explain why, if 1 < a < b , then

$$\int_b^\infty \frac{\ln x}{x^{n+1}} \,\mathrm{d}x < \int_a^\infty \frac{\ln x}{x^{n+1}} \,\mathrm{d}x \;.$$

Deduce that

$$\sum_{n=1}^{N} \frac{1}{n^2} < \frac{e}{2} \int_{e^{1/N}}^{\infty} \left(\frac{1 - x^{-N}}{x^2 - x} \right) \ln x \, dx ,$$

where N is any integer greater than 1.

8 It is given that *y* satisfies

$$\frac{\mathrm{d}y}{\mathrm{d}t} + k\left(\frac{t^2 - 3t + 2}{t + 1}\right)y = 0 \;,$$

where k is a constant, and y = A when t = 0, where A is a positive constant. Find y in terms of t, k and A.

Show that *y* has two stationary values whose ratio is $(3/2)^{6k}e^{-5k/2}$.

Describe the behaviour of y as $t\to +\infty$ for the case where k>0 and for the case where k<0 .

In separate diagrams, sketch the graph of y for t > 0 for each of these cases.

Section B: Mechanics

9 *AB* is a uniform rod of weight *W*. The point *C* on *AB* is such that AC > CB. The rod is in contact with a rough horizontal floor at *A* and with a cylinder at *C*. The cylinder is fixed to the floor with its axis horizontal. The rod makes an angle α with the horizontal and lies in a vertical plane perpendicular to the axis of the cylinder. The coefficient of friction between the rod and the floor is $\tan \lambda_1$ and the coefficient of friction between the rod and the cylinder is $\tan \lambda_2$.

Show that if friction is limiting both at A and at C, and $\alpha \neq \lambda_2 - \lambda_1$, then the frictional force acting on the rod at A has magnitude

$$\frac{W\sin\lambda_1\,\sin(\alpha-\lambda_2)}{\sin(\alpha+\lambda_1-\lambda_2)}$$

10 A bead *B* of mass *m* can slide along a rough horizontal wire. A light inextensible string of length 2ℓ has one end attached to a fixed point *A* of the wire and the other to *B*. A particle *P* of mass 3m is attached to the mid-point of the string and *B* is held at a distance ℓ from *A*. The bead is released from rest.

Let a_1 and a_2 be the magnitudes of the horizontal and vertical components of the initial acceleration of P. Show by considering the motion of P relative to A, or otherwise, that $a_1 = \sqrt{3}a_2$. Show also that the magnitude of the initial acceleration of B is $2a_1$.

Given that the frictional force opposing the motion of *B* is equal to $(\sqrt{3}/6)R$, where *R* is the normal reaction between *B* and the wire, show that the magnitude of the initial acceleration of *P* is g/18.

11 A particle P_1 is projected with speed V at an angle of elevation α (> 45°), from a point in a horizontal plane. Find T_1 , the flight time of P_1 , in terms of α , V and g. Show that the time after projection at which the direction of motion of P_1 first makes an angle of 45° with the horizontal is $\frac{1}{2}(1 - \cot \alpha)T_1$.

A particle P_2 is projected under the same conditions. When the direction of the motion of P_2 first makes an angle of 45° with the horizontal, the speed of P_2 is instantaneously doubled. If T_2 is the total flight time of P_2 , show that

$$\frac{2T_2}{T_1} = 1 + \cot \alpha + \sqrt{1 + 3 \cot^2 \alpha} \; .$$

Section C: Probability and Statistics

12 The life of a certain species of elementary particles can be described as follows. Each particle has a life time of *T* seconds, after which it disintegrates into *X* particles of the same species, where *X* is a random variable with binomial distribution B(2, p). A population of these particles starts with the creation of a single such particle at t = 0. Let X_n be the number of particles in existence in the time interval nT < t < (n+1)T, where n = 1, 2, ...

Show that $P(X_1 = 2 \text{ and } X_2 = 2) = 6p^4q^2$, where q = 1 - p. Find the possible values of p if it is known that $P(X_1 = 2|X_2 = 2) = 9/25$.

Explain briefly why $E(X_n) = 2pE(X_{n-1})$ and hence determine $E(X_n)$ in terms of p. Show that for one of the values of p found above $\lim_{n\to\infty} E(X_n) = 0$ and that for the other $\lim_{n\to\infty} E(X_n) = +\infty$.

13 The random variable *X* takes the values k = 1, 2, 3, ..., and has probability distribution

$$\mathbf{P}(X=k) = A \frac{\lambda^k \mathrm{e}^{-\lambda}}{k!} \,,$$

where λ is a positive constant. Show that $A = (1 - e^{-\lambda})^{-1}$. Find the mean μ in terms of λ and show that

$$\operatorname{Var}(X) = \mu(1 - \mu + \lambda) .$$

Deduce that $\lambda < \mu < 1 + \lambda$.

Use a normal approximation to find the value of $P(X = \lambda)$ in the case where $\lambda = 100$, giving your answer to 2 decimal places.

14 The probability of throwing a 6 with a biased die is p. It is known that p is equal to one or other of the numbers A and B where 0 < A < B < 1. Accordingly the following statistical test of the hypothesis $H_0: p = B$ against the alternative hypothesis $H_1: p = A$ is performed. The die is thrown repeatedly until a 6 is obtained. Then if X is the total number of throws, H_0 is accepted if $X \leq M$, where M is a given positive integer; otherwise H_1 is accepted. Let α be the probability that H_1 is accepted if H_0 is true, and let β be the probability that H_0 is accepted if H_1 is true.

Show that $\beta = 1 - \alpha^K$, where K is independent of M and is to be determined in terms of A and B. Sketch the graph of β against α .