Section A: Pure Mathematics

1 (i) Express $(3+2 \sqrt{5})^{3}$ in the form $a+b \sqrt{5}$ where a and b are integers.
(ii) Find the positive integers c and d such that $\sqrt[3]{99-70 \sqrt{2}}=c-d \sqrt{2}$.
(iii) Find the two real solutions of $x^{6}-198 x^{3}+1=0$.

2 The square bracket notation $[x]$ means the greatest integer less than or equal to x. For example, $[\pi]=3,[\sqrt{24}]=4$ and $[5]=5$.
(i) Sketch the graph of $y=\sqrt{[x]}$ and show that

$$
\int_{0}^{a} \sqrt{[x]} \mathrm{d} x=\sum_{r=0}^{a-1} \sqrt{r}
$$

when a is a positive integer.
(ii) Show that $\int_{0}^{a} 2^{[x]} \mathrm{d} x=2^{a}-1$ when a is a positive integer.
(iii) Determine an expression for $\int_{0}^{a} 2^{[x]} \mathrm{d} x$ when a is positive but not an integer.
$3 \quad$ (i) Show that $x-3$ is a factor of

$$
\begin{equation*}
x^{3}-5 x^{2}+2 x^{2} y+x y^{2}-8 x y-3 y^{2}+6 x+6 y . \tag{*}
\end{equation*}
$$

Express ($*$) in the form $(x-3)(x+a y+b)(x+c y+d)$ where a, b, c and d are integers to be determined.
(ii) Factorise $6 y^{3}-y^{2}-21 y+2 x^{2}+12 x-4 x y+x^{2} y-5 x y^{2}+10$ into three linear factors.

4 Differentiate $\sec t$ with respect to t.
(i) Use the substitution $x=\sec t$ to show that $\int_{\sqrt{2}}^{2} \frac{1}{x^{3} \sqrt{x^{2}-1}} \mathrm{~d} x=\frac{\sqrt{3}-2}{8}+\frac{\pi}{24}$.
(ii) Determine $\int \frac{1}{(x+2) \sqrt{(x+1)(x+3)}} \mathrm{d} x$.
(iii) Determine $\int \frac{1}{(x+2) \sqrt{x^{2}+4 x-5}} \mathrm{~d} x$.

5 The positive integers can be split into five distinct arithmetic progressions, as shown:

$$
\begin{aligned}
& A: \quad 1,6,11,16, \ldots \\
& B: \quad 2,7,12,17, \ldots \\
& C: \quad 3,8,13,18, \ldots \\
& D: \quad 4,9,14,19, \ldots \\
& E: \quad 5,10,15,20, \ldots
\end{aligned}
$$

Write down an expression for the value of the general term in each of the five progressions. Hence prove that the sum of any term in B and any term in C is a term in E.
Prove also that the square of every term in B is a term in D. State and prove a similar claim about the square of every term in C.
(i) Prove that there are no positive integers x and y such that

$$
x^{2}+5 y=243723 .
$$

(ii) Prove also that there are no positive integers x and y such that

$$
x^{4}+2 y^{4}=26081974 .
$$

6 The three points A, B and C have coordinates $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ and $\left(p_{3}, q_{3}\right)$, respectively. Find the point of intersection of the line joining A to the midpoint of $B C$, and the line joining B to the midpoint of $A C$. Verify that this point lies on the line joining C to the midpoint of $A B$.
The point H has coordinates $\left(p_{1}+p_{2}+p_{3}, q_{1}+q_{2}+q_{3}\right)$. Show that if the line $A H$ intersects the line $B C$ at right angles, then $p_{2}^{2}+q_{2}^{2}=p_{3}^{2}+q_{3}^{2}$, and write down a similar result if the line $B H$ intersects the line $A C$ at right angles.
Deduce that if $A H$ is perpendicular to $B C$ and also $B H$ is perpendicular to $A C$, then $C H$ is perpendicular to $A B$.

7 (i) The function $\mathrm{f}(x)$ is defined for $|x|<\frac{1}{5}$ by

$$
\mathrm{f}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where $a_{0}=2, a_{1}=7$ and $a_{n}=7 a_{n-1}-10 a_{n-2}$ for $n \geqslant 2$.
Simplify $\mathrm{f}(x)-7 x \mathrm{f}(x)+10 x^{2} \mathrm{f}(x)$, and hence show that $\mathrm{f}(x)=\frac{1}{1-2 x}+\frac{1}{1-5 x}$.
Hence show that $a_{n}=2^{n}+5^{n}$.
(ii) The function $\mathrm{g}(x)$ is defined for $|x|<\frac{1}{3}$ by

$$
\mathrm{g}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

where $b_{0}=5, b_{1}=10, b_{2}=40, b_{3}=100$ and $b_{n}=p b_{n-1}+q b_{n-2}$ for $n \geqslant 2$. Obtain an expression for $\mathrm{g}(x)$ as the sum of two algebraic fractions and determine b_{n} in terms of n.

8 A sequence $t_{0}, t_{1}, t_{2}, \ldots$ is said to be strictly increasing if $t_{n+1}>t_{n}$ for all $n \geqslant 0$.
(i) The terms of the sequence $x_{0}, x_{1}, x_{2}, \ldots$ satisfy

$$
x_{n+1}=\frac{x_{n}^{2}+6}{5}
$$

for $n \geqslant 0$. Prove that if $x_{0}>3$ then the sequence is strictly increasing.
(ii) The terms of the sequence $y_{0}, y_{1}, y_{2}, \ldots$ satisfy

$$
y_{n+1}=5-\frac{6}{y_{n}}
$$

for $n \geqslant 0$. Prove that if $2<y_{0}<3$ then the sequence is strictly increasing but that $y_{n}<3$ for all n.

Section B: Mechanics

9 A particle is projected over level ground with a speed u at an angle θ above the horizontal. Derive an expression for the greatest height of the particle in terms of u, θ and g.
A particle is projected from the floor of a horizontal tunnel of height $\frac{9}{10} d$. Point P is $\frac{1}{2} d$ metres vertically and d metres horizontally along the tunnel from the point of projection. The particle passes through point P and lands inside the tunnel without hitting the roof. Show that

$$
\arctan \frac{3}{5}<\theta<\arctan 3 .
$$

10 A particle is travelling in a straight line. It accelerates from its initial velocity u to velocity v, where $v>|u|>0$, travelling a distance d_{1} with uniform acceleration of magnitude $3 a$. It then comes to rest after travelling a further distance d_{2} with uniform deceleration of magnitude a. Show that
(i) if $u>0$ then $3 d_{1}<d_{2}$;
(ii) if $u<0$ then $d_{2}<3 d_{1}<2 d_{2}$.

Show also that the average speed of the particle (that is, the total distance travelled divided by the total time) is greater in the case $u>0$ than in the case $u<0$.
Note: In this question d_{1} and d_{2} are distances travelled by the particle which are not the same, in the second case, as displacements from the starting point.

11 Two uniform ladders $A B$ and $B C$ of equal length are hinged smoothly at B. The weight of $A B$ is W and the weight of $B C$ is $4 W$. The ladders stand on rough horizontal ground with $\angle A B C=60^{\circ}$. The coefficient of friction between each ladder and the ground is μ.
A decorator of weight $7 W$ begins to climb the ladder $A B$ slowly. When she has climbed up $\frac{1}{3}$ of the ladder, one of the ladders slips. Which ladder slips, and what is the value of μ ?

Section C: Probability and Statistics

12 In a certain factory, microchips are made by two machines. Machine A makes a proportion λ of the chips, where $0<\lambda<1$, and machine B makes the rest. A proportion p of the chips made by machine A are perfect, and a proportion q of those made by machine B are perfect, where $0<p<1$ and $0<q<1$. The chips are sorted into two groups: group 1 contains those that are perfect and group 2 contains those that are imperfect.
In a large random sample taken from group 1, it is found that $\frac{2}{5}$ were made by machine A. Show that λ can estimated as

$$
\frac{2 q}{3 p+2 q} .
$$

Subsequently, it is discovered that the sorting process is faulty: there is a probability of $\frac{1}{4}$ that a perfect chip is assigned to group 2 and a probability of $\frac{1}{4}$ that an imperfect chip is assigned to group 1. Taking into account this additional information, obtain a new estimate of λ.

13 (i) Three real numbers are drawn independently from the continuous rectangular distribution on $[0,1]$. The random variable X is the maximum of the three numbers. Show that the probability that $X \leqslant 0.8$ is 0.512 , and calculate the expectation of X.
(ii) N real numbers are drawn independently from a continuous rectangular distribution on $[0, a]$. The random variable X is the maximum of the N numbers. A hypothesis test with a significance level of 5% is carried out using the value, x, of X. The null hypothesis is that $a=1$ and the alternative hypothesis is that $a<1$. The form of the test is such that H_{0} is rejected if $x<c$, for some chosen number c.

Using the approximation $2^{10} \approx 10^{3}$, determine the smallest integer value of N such that if $x \leqslant 0.8$ the null hypothesis will be rejected.

With this value of N, write down the probability that the null hypothesis is rejected if $a=0.8$, and find the probability that the null hypothesis is rejected if $a=0.9$.

14 Three pirates are sharing out the contents of a treasure chest containing n gold coins and 2 lead coins. The first pirate takes out coins one at a time until he takes out one of the lead coins. The second pirate then takes out coins one at a time until she draws the second lead coin. The third pirate takes out all the gold coins remaining in the chest.
Find:
(i) the probability that the first pirate will have some gold coins;
(ii) the probability that the second pirate will have some gold coins;
(iii) the probability that all three pirates will have some gold coins.

