Section A: Pure Mathematics

1 Find the three values of x for which the derivative of $x^{2} \mathrm{e}^{-x^{2}}$ is zero.
Given that a and b are distinct positive numbers, find a polynomial $\mathrm{P}(x)$ such that the derivative of $\mathrm{P}(x) \mathrm{e}^{-x^{2}}$ is zero for $x=0, x= \pm a$ and $x= \pm b$, but for no other values of x.

2 For any positive integer N, the function $\mathrm{f}(N)$ is defined by

$$
\mathrm{f}(N)=N\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

where $p_{1}, p_{2}, \ldots, p_{k}$ are the only prime numbers that are factors of N.
Thus $\mathrm{f}(80)=80\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)$.
(i) (a) Evaluate $\mathrm{f}(12)$ and $\mathrm{f}(180)$.
(b) Show that $\mathrm{f}(N)$ is an integer for all N.
(ii) Prove, or disprove by means of a counterexample, each of the following:
(a) $\mathrm{f}(m) \mathrm{f}(n)=\mathrm{f}(m n)$;
(b) $\mathrm{f}(p) \mathrm{f}(q)=\mathrm{f}(p q)$ if p and q are distinct prime numbers;
(c) $\mathrm{f}(p) \mathrm{f}(q)=\mathrm{f}(p q)$ only if p and q are distinct prime numbers.
(iii) Find a positive integer m and a prime number p such that $\mathrm{f}\left(p^{m}\right)=146410$.

3 Give a sketch, for $0 \leqslant x \leqslant \frac{1}{2} \pi$, of the curve

$$
y=(\sin x-x \cos x),
$$

and show that $0 \leqslant y \leqslant 1$.
Show that:
(i) $\int_{0}^{\frac{1}{2} \pi} y \mathrm{~d} x=2-\frac{\pi}{2}$;
(ii) $\quad \int_{0}^{\frac{1}{2} \pi} y^{2} \mathrm{~d} x=\frac{\pi^{3}}{48}-\frac{\pi}{8}$.

Deduce that $\pi^{3}+18 \pi<96$.

4 The positive numbers a, b and c satisfy $b c=a^{2}+1$. Prove that

$$
\tan ^{-1}\left(\frac{1}{a+b}\right)+\tan ^{-1}\left(\frac{1}{a+c}\right)=\tan ^{-1}\left(\frac{1}{a}\right) .
$$

The positive numbers p, q, r, s, t, u and v satisfy

$$
s t=(p+q)^{2}+1, \quad u v=(p+r)^{2}+1, \quad q r=p^{2}+1 .
$$

Prove that

$$
\tan ^{-1}\left(\frac{1}{p+q+s}\right)+\tan ^{-1}\left(\frac{1}{p+q+t}\right)+\tan ^{-1}\left(\frac{1}{p+r+u}\right)+\tan ^{-1}\left(\frac{1}{p+r+v}\right)=\tan ^{-1}\left(\frac{1}{p}\right) .
$$

Hence show that

$$
\tan ^{-1}\left(\frac{1}{13}\right)+\tan ^{-1}\left(\frac{1}{21}\right)+\tan ^{-1}\left(\frac{1}{82}\right)+\tan ^{-1}\left(\frac{1}{187}\right)=\tan ^{-1}\left(\frac{1}{7}\right) .
$$

[Note that $\arctan x$ is another notation for $\tan ^{-1} x$.]

5 The angle A of triangle $A B C$ is a right angle and the sides $B C, C A$ and $A B$ are of lengths a, b and c, respectively. Each side of the triangle is tangent to the circle S_{1} which is of radius r. Show that $2 r=b+c-a$.
Each vertex of the triangle lies on the circle S_{2}. The ratio of the area of the region between S_{1} and the triangle to the area of S_{2} is denoted by R. Show that

$$
\pi R=-(\pi-1) q^{2}+2 \pi q-(\pi+1),
$$

where $q=\frac{b+c}{a}$. Deduce that

$$
R \leqslant \frac{1}{\pi(\pi-1)}
$$

6 (i) Write down the general term in the expansion in powers of x of $(1-x)^{-1},(1-x)^{-2}$ and $(1-x)^{-3}$, where $|x|<1$.
Evaluate $\sum_{n=1}^{\infty} n 2^{-n}$ and $\sum_{n=1}^{\infty} n^{2} 2^{-n}$.
(ii) Show that $(1-x)^{-\frac{1}{2}}=\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}} \frac{x^{n}}{2^{2 n}}$, for $|x|<1$.

Evaluate $\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2} 2^{2 n} 3^{n}}$ and $\sum_{n=1}^{\infty} \frac{n(2 n)!}{(n!)^{2} 2^{2 n} 3^{n}}$.

7 The position vectors, relative to an origin O, at time t of the particles P and Q are

$$
\cos t \mathbf{i}+\sin t \mathbf{j}+0 \mathbf{k} \quad \text { and } \quad \cos \left(t+\frac{1}{4} \pi\right)\left[\frac{3}{2} \mathbf{i}+\frac{3 \sqrt{3}}{2} \mathbf{k}\right]+3 \sin \left(t+\frac{1}{4} \pi\right) \mathbf{j}
$$

respectively, where $0 \leqslant t \leqslant 2 \pi$.
(i) Give a geometrical description of the motion of P and Q.
(ii) Let θ be the angle $P O Q$ at time t that satisfies $0 \leqslant \theta \leqslant \pi$. Show that

$$
\cos \theta=\frac{3 \sqrt{ } 2}{8}-\frac{1}{4} \cos \left(2 t+\frac{1}{4} \pi\right) .
$$

(iii) Show that the total time for which $\theta \geqslant \frac{1}{4} \pi$ is $\frac{3}{2} \pi$.

8 For $x \geqslant 0$ the curve C is defined by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{3} y^{2}}{\left(1+x^{2}\right)^{5 / 2}}
$$

with $y=1$ when $x=0$. Show that

$$
\frac{1}{y}=\frac{2+3 x^{2}}{3\left(1+x^{2}\right)^{3 / 2}}+\frac{1}{3}
$$

and hence that for large positive x

$$
y \approx 3-\frac{9}{x} .
$$

Draw a sketch of C.
On a separate diagram draw a sketch of the two curves defined for $x \geqslant 0$ by

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{x^{3} z^{3}}{2\left(1+x^{2}\right)^{5 / 2}}
$$

with $z=1$ at $x=0$ on one curve, and $z=-1$ at $x=0$ on the other.

Section B: Mechanics

9 Two particles, A and B, of masses m and $2 m$, respectively, are placed on a line of greatest slope, ℓ, of a rough inclined plane which makes an angle of 30° with the horizontal. The coefficient of friction between A and the plane is $\frac{1}{6} \sqrt{3}$ and the coefficient of friction between B and the plane is $\frac{1}{3} \sqrt{3}$. The particles are at rest with B higher up ℓ than A and are connected by a light inextensible string which is taut. A force P is applied to B.
(i) Show that the least magnitude of P for which the two particles move upwards along ℓ is $\frac{11}{8} \sqrt{3} \mathrm{mg}$ and give, in this case, the direction in which P acts.
(ii) Find the least magnitude of P for which the particles do not slip downwards along ℓ.

10 The points A and B are 180 metres apart and lie on horizontal ground. A missile is launched from A at speed of $100 \mathrm{~ms}^{-1}$ and at an acute angle of elevation to the line $A B$ of $\arcsin \frac{3}{5}$. A time T seconds later, an anti-missile missile is launched from B, at speed of $200 \mathrm{~m} \mathrm{~s}^{-1}$ and at an acute angle of elevation to the line $B A$ of $\arcsin \frac{4}{5}$. The motion of both missiles takes place in the vertical plane containing A and B, and the missiles collide.
Taking $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and ignoring air resistance, find T.
[Note that $\arcsin \frac{3}{5}$ is another notation for $\sin ^{-1} \frac{3}{5}$.]

11 A plane is inclined at an angle $\arctan \frac{3}{4}$ to the horizontal and a small, smooth, light pulley P is fixed to the top of the plane. A string, $A P B$, passes over the pulley. A particle of mass m_{1} is attached to the string at A and rests on the inclined plane with $A P$ parallel to a line of greatest slope in the plane. A particle of mass m_{2}, where $m_{2}>m_{1}$, is attached to the string at B and hangs freely with $B P$ vertical. The coefficient of friction between the particle at A and the plane is $\frac{1}{2}$.
The system is released from rest with the string taut. Show that the acceleration of the particles is $\frac{m_{2}-m_{1}}{m_{2}+m_{1}} g$.
At a time T after release, the string breaks. Given that the particle at A does not reach the pulley at any point in its motion, find an expression in terms of T for the time after release at which the particle at A reaches its maximum height. It is found that, regardless of when the string broke, this time is equal to the time taken by the particle at A to descend from its point of maximum height to the point at which it was released. Find the ratio $m_{1}: m_{2}$.
[Note that $\arctan \frac{3}{4}$ is another notation for $\tan ^{-1} \frac{3}{4}$.]

Section C: Probability and Statistics

12 The twins Anna and Bella share a computer and never sign their e-mails. When I e-mail them, only the twin currently online responds. The probability that it is Anna who is online is p and she answers each question I ask her truthfully with probability a, independently of all her other answers, even if a question is repeated. The probability that it is Bella who is online is q, where $q=1-p$, and she answers each question truthfully with probability b, independently of all her other answers, even if a question is repeated.
(i) I send the twins the e-mail: 'Toss a fair coin and answer the following question. Did the coin come down heads?'. I receive the answer 'yes'. Show that the probability that the coin did come down heads is $\frac{1}{2}$ if and only if $2(a p+b q)=1$.
(ii) I send the twins the e-mail: 'Toss a fair coin and answer the following question. Did the coin come down heads?'. I receive the answer 'yes'. I then send the e-mail: 'Did the coin come down heads?' and I receive the answer 'no'. Show that the probability (taking into account these answers) that the coin did come down heads is $\frac{1}{2}$.
(iii) I send the twins the e-mail: 'Toss a fair coin and answer the following question. Did the coin come down heads?'. I receive the answer 'yes'. I then send the e-mail: 'Did the coin come down heads?' and I receive the answer 'yes'. Show that, if $2(a p+b q)=1$, the probability (taking into account these answers) that the coin did come down heads is $\frac{1}{2}$.

13 The number of printing errors on any page of a large book of N pages is modelled by a Poisson variate with parameter λ and is statistically independent of the number of printing errors on any other page. The number of pages in a random sample of n pages (where n is much smaller than N and $n \geqslant 2$) which contain fewer than two errors is denoted by Y. Show that $\mathrm{P}(Y=k)=\binom{n}{k} p^{k} q^{n-k}$ where $p=(1+\lambda) e^{-\lambda}$ and $q=1-p$.
Show also that, if λ is sufficiently small,
(i) $q \approx \frac{1}{2} \lambda^{2}$;
(ii) the largest value of n for which $\mathrm{P}(Y=n) \geqslant 1-\lambda$ is approximately $2 / \lambda$;
(iii) $\mathrm{P}(Y>1 \mid Y>0) \approx 1-n\left(\lambda^{2} / 2\right)^{n-1}$.

14 The probability density function $\mathrm{f}(x)$ of the random variable X is given by

$$
\mathrm{f}(x)=k[\phi(x)+\lambda \mathrm{g}(x)],
$$

where $\phi(x)$ is the probability density function of a normal variate with mean 0 and variance 1 , λ is a positive constant, and $\mathrm{g}(x)$ is a probability density function defined by

$$
\mathrm{g}(x)= \begin{cases}1 / \lambda & \text { for } 0 \leqslant x \leqslant \lambda \\ 0 & \text { otherwise }\end{cases}
$$

Find μ, the mean of X, in terms of λ, and prove that σ, the standard deviation of X, satisfies.

$$
\sigma^{2}=\frac{\lambda^{4}+4 \lambda^{3}+12 \lambda+12}{12(1+\lambda)^{2}} .
$$

In the case $\lambda=2$:
(i) draw a sketch of the curve $y=\mathrm{f}(x)$;
(ii) express the cumulative distribution function of X in terms of $\Phi(x)$, the cumulative distribution function corresponding to $\phi(x)$;
(iii) evaluate $\mathrm{P}(0<X<\mu+2 \sigma)$, given that $\Phi\left(\frac{2}{3}+\frac{2}{3} \sqrt{ } 7\right)=0.9921$.

