Section A: Pure Mathematics

1 Given that

$$
5 x^{2}+2 y^{2}-6 x y+4 x-4 y \equiv a(x-y+2)^{2}+b(c x+y)^{2}+d
$$

find the values of the constants a, b, c and d.
Solve the simultaneous equations

$$
\begin{aligned}
& 5 x^{2}+2 y^{2}-6 x y+4 x-4 y=9 \\
& 6 x^{2}+3 y^{2}-8 x y+8 x-8 y=14
\end{aligned}
$$

2 The curve $y=\left(\frac{x-a}{x-b}\right) \mathrm{e}^{x}$, where a and b are constants, has two stationary points. Show that

$$
a-b<0 \text { or } a-b>4 .
$$

(i) Show that, in the case $a=0$ and $b=\frac{1}{2}$, there is one stationary point on either side of the curve's vertical asymptote, and sketch the curve.
(ii) Sketch the curve in the case $a=\frac{9}{2}$ and $b=0$.

3 Show that

$$
\sin (x+y)-\sin (x-y)=2 \cos x \sin y
$$

and deduce that

$$
\sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) .
$$

Show also that

$$
\cos A-\cos B=-2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) .
$$

The points P, Q, R and S have coordinates $(a \cos p, b \sin p),(a \cos q, b \sin q),(a \cos r, b \sin r)$ and $(a \cos s, b \sin s)$ respectively, where $0 \leqslant p<q<r<s<2 \pi$, and a and b are positive.
Given that neither of the lines $P Q$ and $S R$ is vertical, show that these lines are parallel if and only if

$$
r+s-p-q=2 \pi .
$$

4 Use the substitution $x=\frac{1}{t^{2}-1}$, where $t>1$, to show that, for $x>0$,

$$
\int \frac{1}{\sqrt{x(x+1)}} \mathrm{d} x=2 \ln (\sqrt{x}+\sqrt{x+1})+c
$$

[Note You may use without proof the result $\int \frac{1}{t^{2}-a^{2}} \mathrm{~d} t=\frac{1}{2 a} \ln \left|\frac{t-a}{t+a}\right|+$ constant.]
The section of the curve

$$
y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}
$$

between $x=\frac{1}{8}$ and $x=\frac{9}{16}$ is rotated through 360° about the x-axis. Show that the volume enclosed is $2 \pi \ln \frac{5}{4}$.

5 By considering the expansion of $(1+x)^{n}$ where n is a positive integer, or otherwise, show that:
(i) $\quad\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}$;
(ii) $\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+n\binom{n}{n}=n 2^{n-1}$;
(iii) $\binom{n}{0}+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\cdots+\frac{1}{n+1}\binom{n}{n}=\frac{1}{n+1}\left(2^{n+1}-1\right)$;
(iv) $\binom{n}{1}+2^{2}\binom{n}{2}+3^{2}\binom{n}{3}+\cdots+n^{2}\binom{n}{n}=n(n+1) 2^{n-2}$.

6 Show that, if $y=\mathrm{e}^{x}$, then

$$
\begin{equation*}
(x-1) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0 \tag{*}
\end{equation*}
$$

In order to find other solutions of this differential equation, now let $y=u \mathrm{e}^{x}$, where u is a function of x. By substituting this into $(*)$, show that

$$
\begin{equation*}
(x-1) \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+(x-2) \frac{\mathrm{d} u}{\mathrm{~d} x}=0 \tag{**}
\end{equation*}
$$

By setting $\frac{\mathrm{d} u}{\mathrm{~d} x}=v$ in $(* *)$ and solving the resulting first order differential equation for v, find u in terms of x. Hence show that $y=A x+B \mathrm{e}^{x}$ satisfies $(*)$, where A and B are any constants.

7 Relative to a fixed origin O, the points A and B have position vectors a and \mathbf{b}, respectively. (The points O, A and B are not collinear.) The point C has position vector \mathbf{c} given by

$$
\mathbf{c}=\alpha \mathbf{a}+\beta \mathbf{b},
$$

where α and β are positive constants with $\alpha+\beta<1$. The lines $O A$ and $B C$ meet at the point P with position vector \mathbf{p} and the lines $O B$ and $A C$ meet at the point Q with position vector \mathbf{q}. Show that

$$
\mathbf{p}=\frac{\alpha \mathbf{a}}{1-\beta},
$$

and write down \mathbf{q} in terms of α, β and \mathbf{b}.
Show further that the point R with position vector \mathbf{r} given by

$$
\mathbf{r}=\frac{\alpha \mathbf{a}+\beta \mathbf{b}}{\alpha+\beta},
$$

lies on the lines $O C$ and $A B$.
The lines $O B$ and $P R$ intersect at the point S. Prove that $\frac{O Q}{B Q}=\frac{O S}{B S}$.

8 (i) Suppose that a, b and c are integers that satisfy the equation

$$
a^{3}+3 b^{3}=9 c^{3} .
$$

Explain why a must be divisible by 3 , and show further that both b and c must also be divisible by 3 . Hence show that the only integer solution is $a=b=c=0$.
(ii) Suppose that p, q and r are integers that satisfy the equation

$$
p^{4}+2 q^{4}=5 r^{4} .
$$

By considering the possible final digit of each term, or otherwise, show that p and q are divisible by 5 . Hence show that the only integer solution is $p=q=r=0$.

Section B: Mechanics

9

The diagram shows a uniform rectangular lamina with sides of lengths $2 a$ and $2 b$ leaning against a rough vertical wall, with one corner resting on a rough horizontal plane. The plane of the lamina is vertical and perpendicular to the wall, and one edge makes an angle of α with the horizontal plane. Show that the centre of mass of the lamina is a distance $a \cos \alpha+b \sin \alpha$ from the wall.

The coefficients of friction at the two points of contact are each μ and the friction is limiting at both contacts. Show that

$$
a \cos (2 \lambda+\alpha)=b \sin \alpha
$$

where $\tan \lambda=\mu$.
Show also that if the lamina is square, then $\lambda=\frac{1}{4} \pi-\alpha$.

10 A particle P moves so that, at time t, its displacement \mathbf{r} from a fixed origin is given by

$$
\mathbf{r}=\left(\mathrm{e}^{t} \cos t\right) \mathbf{i}+\left(\mathrm{e}^{t} \sin t\right) \mathbf{j}
$$

Show that the velocity of the particle always makes an angle of $\frac{\pi}{4}$ with the particle's displacement, and that the acceleration of the particle is always perpendicular to its displacement. Sketch the path of the particle for $0 \leqslant t \leqslant \pi$.
A second particle Q moves on the same path, passing through each point on the path a fixed time T after P does. Show that the distance between P and Q is proportional to e^{t}.

11 Two particles of masses m and M, with $M>m$, lie in a smooth circular groove on a horizontal plane. The coefficient of restitution between the particles is e. The particles are initially projected round the groove with the same speed u but in opposite directions. Find the speeds of the particles after they collide for the first time and show that they will both change direction if $2 e m>M-m$.

After a further $2 n$ collisions, the speed of the particle of mass m is v and the speed of the particle of mass M is V. Given that at each collision both particles change their directions of motion, explain why

$$
m v-M V=u(M-m),
$$

and find v and V in terms of m, M, e, u and n.

Section C: Probability and Statistics

12 A discrete random variable X takes only positive integer values. Define $\mathrm{E}(X)$ for this case, and show that

$$
\mathrm{E}(X)=\sum_{n=1}^{\infty} \mathrm{P}(X \geqslant n) .
$$

I am collecting toy penguins from cereal boxes. Each box contains either one daddy penguin or one mummy penguin. The probability that a given box contains a daddy penguin is p and the probability that a given box contains a mummy penguin is q, where $p \neq 0, q \neq 0$ and $p+q=1$.

Let X be the number of boxes that I need to open to get at least one of each kind of penguin. Show that $\mathrm{P}(X \geqslant 4)=p^{3}+q^{3}$, and that

$$
\mathrm{E}(X)=\frac{1}{p q}-1 .
$$

Hence show that $\mathrm{E}(X) \geqslant 3$.

13 The number of texts that George receives on his mobile phone can be modelled by a Poisson random variable with mean λ texts per hour. Given that the probability George waits between 1 and 2 hours in the morning before he receives his first text is p, show that

$$
p \mathrm{e}^{2 \lambda}-\mathrm{e}^{\lambda}+1=0 .
$$

Given that $4 p<1$, show that there are two positive values of λ that satisfy this equation.
The number of texts that Mildred receives on each of her two mobile phones can be modelled by independent Poisson random variables with different means λ_{1} and λ_{2} texts per hour. Given that, for each phone, the probability that Mildred waits between 1 and 2 hours in the morning before she receives her first text is also p, find an expression for $\lambda_{1}+\lambda_{2}$ in terms of p.
Find the probability, in terms of p, that she waits between 1 and 2 hours in the morning to receive her first text.

