Section A: Pure Mathematics

1 (i) Show that the gradient of the curve $\frac{a}{x}+\frac{b}{y}=1$, where $b \neq 0$, is $-\frac{a y^{2}}{b x^{2}}$.
The point (p, q) lies on both the straight line $a x+b y=1$ and the curve $\frac{a}{x}+\frac{b}{y}=1$, where $a b \neq 0$. Given that, at this point, the line and the curve have the same gradient, show that $p= \pm q$.
Show further that either $(a-b)^{2}=1$ or $(a+b)^{2}=1$.
(ii) Show that if the straight line $a x+b y=1$, where $a b \neq 0$, is a normal to the curve $\frac{a}{x}-\frac{b}{y}=1$, then $a^{2}-b^{2}=\frac{1}{2}$.

2 The number E is defined by $E=\int_{0}^{1} \frac{\mathrm{e}^{x}}{1+x} \mathrm{~d} x$.
Show that

$$
\int_{0}^{1} \frac{x \mathrm{e}^{x}}{1+x} \mathrm{~d} x=\mathrm{e}-1-E,
$$

and evaluate $\int_{0}^{1} \frac{x^{2} \mathrm{e}^{x}}{1+x} \mathrm{~d} x$ in terms of e and E.
Evaluate also, in terms of E and e as appropriate:
(i) $\int_{0}^{1} \frac{\mathrm{e}^{\frac{1-x}{1+x}}}{1+x} \mathrm{~d} x$;
(ii) $\int_{1}^{\sqrt{2}} \frac{\mathrm{e}^{x^{2}}}{x} \mathrm{~d} x$.

3 Prove the identity

$$
\begin{equation*}
4 \sin \theta \sin \left(\frac{1}{3} \pi-\theta\right) \sin \left(\frac{1}{3} \pi+\theta\right)=\sin 3 \theta \tag{*}
\end{equation*}
$$

(i) By differentiating $(*)$, or otherwise, show that

$$
\cot \frac{1}{9} \pi-\cot \frac{2}{9} \pi+\cot \frac{4}{9} \pi=\sqrt{3} .
$$

(ii) By setting $\theta=\frac{1}{6} \pi-\phi$ in $(*)$, or otherwise, obtain a similar identity for $\cos 3 \theta$ and deduce that

$$
\cot \theta \cot \left(\frac{1}{3} \pi-\theta\right) \cot \left(\frac{1}{3} \pi+\theta\right)=\cot 3 \theta .
$$

Show that

$$
\operatorname{cosec} \frac{1}{9} \pi-\operatorname{cosec} \frac{5}{9} \pi+\operatorname{cosec} \frac{7}{9} \pi=2 \sqrt{3} .
$$

4 The distinct points P and Q, with coordinates $\left(a p^{2}, 2 a p\right)$ and $\left(a q^{2}, 2 a q\right)$ respectively, lie on the curve $y^{2}=4 a x$. The tangents to the curve at P and Q meet at the point T. Show that T has coordinates (apq,a(p+q)). You may assume that $p \neq 0$ and $q \neq 0$.
The point F has coordinates $(a, 0)$ and ϕ is the angle $T F P$. Show that

$$
\cos \phi=\frac{p q+1}{\sqrt{\left(p^{2}+1\right)\left(q^{2}+1\right)}}
$$

and deduce that the line $F T$ bisects the angle $P F Q$.

5 Given that $0<k<1$, show with the help of a sketch that the equation

$$
\begin{equation*}
\sin x=k x \tag{*}
\end{equation*}
$$

has a unique solution in the range $0<x<\pi$.
Let

$$
I=\int_{0}^{\pi}|\sin x-k x| \mathrm{d} x .
$$

Show that

$$
I=\frac{\pi^{2} \sin \alpha}{2 \alpha}-2 \cos \alpha-\alpha \sin \alpha,
$$

where α is the unique solution of $(*)$.
Show that I, regarded as a function of α, has a unique stationary value and that this stationary value is a minimum. Deduce that the smallest value of I is

$$
-2 \cos \frac{\pi}{\sqrt{2}}
$$

6 Use the binomial expansion to show that the coefficient of x^{r} in the expansion of $(1-x)^{-3}$ is $\frac{1}{2}(r+1)(r+2)$.
(i) Show that the coefficient of x^{r} in the expansion of

$$
\frac{1-x+2 x^{2}}{(1-x)^{3}}
$$

is $r^{2}+1$ and hence find the sum of the series

$$
1+\frac{2}{2}+\frac{5}{4}+\frac{10}{8}+\frac{17}{16}+\frac{26}{32}+\frac{37}{64}+\frac{50}{128}+\cdots
$$

(ii) Find the sum of the series

$$
1+2+\frac{9}{4}+2+\frac{25}{16}+\frac{9}{8}+\frac{49}{64}+\cdots
$$

7 In this question, you may assume that $\ln (1+x) \approx x-\frac{1}{2} x^{2}$ when $|x|$ is small.
The height of the water in a tank at time t is h. The initial height of the water is H and water flows into the tank at a constant rate. The cross-sectional area of the tank is constant.
(i) Suppose that water leaks out at a rate proportional to the height of the water in the tank, and that when the height reaches $\alpha^{2} H$, where α is a constant greater than 1 , the height remains constant. Show that

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=k\left(\alpha^{2} H-h\right)
$$

for some positive constant k. Deduce that the time T taken for the water to reach height αH is given by

$$
k T=\ln \left(1+\frac{1}{\alpha}\right)
$$

and that $k T \approx \alpha^{-1}$ for large values of α.
(ii) Suppose that the rate at which water leaks out of the tank is proportional to \sqrt{h} (instead of h), and that when the height reaches $\alpha^{2} H$, where α is a constant greater than 1 , the height remains constant. Show that the time T^{\prime} taken for the water to reach height αH is given by

$$
c T^{\prime}=2 \sqrt{H}\left(1-\sqrt{\alpha}+\alpha \ln \left(1+\frac{1}{\sqrt{\alpha}}\right)\right)
$$

for some positive constant c, and that $c T^{\prime} \approx \sqrt{H}$ for large values of α.
$8 \quad$ (i) The numbers m and n satisfy

$$
\begin{equation*}
m^{3}=n^{3}+n^{2}+1 \tag{*}
\end{equation*}
$$

(a) Show that $m>n$. Show also that $m<n+1$ if and only if $2 n^{2}+3 n>0$. Deduce that $n<m<n+1$ unless $-\frac{3}{2} \leqslant n \leqslant 0$.
(b) Hence show that the only solutions of ($*$) for which both m and n are integers are $(m, n)=(1,0)$ and $(m, n)=(1,-1)$.
(ii) Find all integer solutions of the equation

$$
p^{3}=q^{3}+2 q^{2}-1 .
$$

Section B: Mechanics

9 A particle is projected at an angle θ above the horizontal from a point on a horizontal plane. The particle just passes over two walls that are at horizontal distances d_{1} and d_{2} from the point of projection and are of heights d_{2} and d_{1}, respectively. Show that

$$
\tan \theta=\frac{d_{1}^{2}+d_{1} d_{2}+d_{2}^{2}}{d_{1} d_{2}} .
$$

Find (and simplify) an expression in terms of d_{1} and d_{2} only for the range of the particle.

10 A particle, A, is dropped from a point P which is at a height h above a horizontal plane. A second particle, B, is dropped from P and first collides with A after A has bounced on the plane and before A reaches P again. The bounce and the collision are both perfectly elastic. Explain why the speeds of A and B immediately before the first collision are the same.
The masses of A and B are M and m, respectively, where $M>3 m$, and the speed of the particles immediately before the first collision is u. Show that both particles move upwards after their first collision and that the maximum height of B above the plane after the first collision and before the second collision is

$$
h+\frac{4 M(M-m) u^{2}}{(M+m)^{2} g} .
$$

11 A thin non-uniform bar $A B$ of length $7 d$ has centre of mass at a point G, where $A G=3 d$. A light inextensible string has one end attached to A and the other end attached to B. The string is hung over a smooth peg P and the bar hangs freely in equilibrium with B lower than A. Show that

$$
3 \sin \alpha=4 \sin \beta,
$$

where α and β are the angles $P A B$ and $P B A$, respectively.
Given that $\cos \beta=\frac{4}{5}$ and that α is acute, find in terms of d the length of the string and show that the angle of inclination of the bar to the horizontal is $\arctan \frac{1}{7}$.

Section C: Probability and Statistics

12 I am selling raffle tickets for $£ 1$ per ticket. In the queue for tickets, there are m people each with a single $£ 1$ coin and n people each with a single $£ 2$ coin. Each person in the queue wants to buy a single raffle ticket and each arrangement of people in the queue is equally likely to occur. Initially, I have no coins and a large supply of tickets. I stop selling tickets if I cannot give the required change.
(i) In the case $n=1$ and $m \geqslant 1$, find the probability that I am able to sell one ticket to each person in the queue.
(ii) By considering the first three people in the queue, show that the probability that I am able to sell one ticket to each person in the queue in the case $n=2$ and $m \geqslant 2$ is $\frac{m-1}{m+1}$.
(iii) Show that the probability that I am able to sell one ticket to each person in the queue in the case $n=3$ and $m \geqslant 3$ is $\frac{m-2}{m+1}$.

13 In this question, you may use without proof the following result:

$$
\int \sqrt{4-x^{2}} \mathrm{~d} x=2 \arcsin \left(\frac{1}{2} x\right)+\frac{1}{2} x \sqrt{4-x^{2}}+c .
$$

A random variable X has probability density function f given by

$$
\mathrm{f}(x)=\left\{\begin{array}{lc}
2 k & -a \leqslant x<0 \\
k \sqrt{4-x^{2}} & 0 \leqslant x \leqslant 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

where k and a are positive constants.
(i) Find, in terms of a, the mean of X.
(ii) Let d be the value of X such that $\mathrm{P}(X>d)=\frac{1}{10}$. Show that $d<0$ if $2 a>9 \pi$ and find an expression for d in terms of a in this case.
(iii) Given that $d=\sqrt{2}$, find a.

