Section A: Pure Mathematics

1 (i) Sketch the curve $y=\sqrt{1-x}+\sqrt{3+x}$.
Use your sketch to show that only one real value of x satisfies

$$
\sqrt{1-x}+\sqrt{3+x}=x+1,
$$

and give this value.
(ii) Determine graphically the number of real values of x that satisfy

$$
2 \sqrt{1-x}=\sqrt{3+x}+\sqrt{3-x}
$$

Solve this equation.

2 Write down the cubes of the integers $1,2, \ldots, 10$.
The positive integers x, y and z, where $x<y$, satisfy

$$
\begin{equation*}
x^{3}+y^{3}=k z^{3}, \tag{*}
\end{equation*}
$$

where k is a given positive integer.
(i) In the case $x+y=k$, show that

$$
z^{3}=k^{2}-3 k x+3 x^{2} .
$$

Deduce that $\left(4 z^{3}-k^{2}\right) / 3$ is a perfect square and that $\frac{1}{4} k^{2} \leqslant z^{3}<k^{2}$.
Use these results to find a solution of $(*)$ when $k=20$.
(ii) By considering the case $x+y=z^{2}$, find two solutions of $(*)$ when $k=19$.

3 In this question, you may assume without proof that any function f for which $\mathrm{f}^{\prime}(x) \geqslant 0$ is increasing; that is, $\mathrm{f}\left(x_{2}\right) \geqslant \mathrm{f}\left(x_{1}\right)$ if $x_{2} \geqslant x_{1}$.
(i) (a) Let $\mathrm{f}(x)=\sin x-x \cos x$. Show that $\mathrm{f}(x)$ is increasing for $0 \leqslant x \leqslant \frac{1}{2} \pi$ and deduce that $\mathrm{f}(x) \geqslant 0$ for $0 \leqslant x \leqslant \frac{1}{2} \pi$.
(b) Given that $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin x) \geqslant 1$ for $0 \leqslant x<1$, show that

$$
\arcsin x \geqslant x \quad(0 \leqslant x<1) .
$$

(c) Let $\mathrm{g}(x)=x \operatorname{cosec} x$ for $0<x<\frac{1}{2} \pi$. Show that g is increasing and deduce that

$$
(\arcsin x) x^{-1} \geqslant x \operatorname{cosec} x \quad(0<x<1) .
$$

(ii) Given that $\frac{\mathrm{d}}{\mathrm{d} x}(\arctan x) \leqslant 1$ for $x \geqslant 0$, show by considering the function $x^{-1} \tan x$ that

$$
(\tan x)(\arctan x) \geqslant x^{2} \quad\left(0<x<\frac{1}{2} \pi\right)
$$

4 (i) Find all the values of θ, in the range $0^{\circ}<\theta<180^{\circ}$, for which $\cos \theta=\sin 4 \theta$. Hence show that

$$
\sin 18^{\circ}=\frac{1}{4}(\sqrt{5}-1) .
$$

(ii) Given that

$$
4 \sin ^{2} x+1=4 \sin ^{2} 2 x
$$

find all possible values of $\sin x$, giving your answers in the form $p+q \sqrt{5}$ where p and q are rational numbers.
(iii) Hence find two values of α with $0^{\circ}<\alpha<90^{\circ}$ for which

$$
\sin ^{2} 3 \alpha+\sin ^{2} 5 \alpha=\sin ^{2} 6 \alpha .
$$

5 The points A and B have position vectors a and \mathbf{b} with respect to an origin O, and O, A and B are non-collinear. The point C, with position vector \mathbf{c}, is the reflection of B in the line through O and A. Show that \mathbf{c} can be written in the form

$$
\mathbf{c}=\lambda \mathbf{a}-\mathbf{b}
$$

where $\lambda=\frac{2 \mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$.
The point D, with position vector \mathbf{d}, is the reflection of C in the line through O and B. Show that d can be written in the form

$$
\mathbf{d}=\mu \mathbf{b}-\lambda \mathbf{a}
$$

for some scalar μ to be determined.
Given that A, B and D are collinear, find the relationship between λ and μ. In the case $\lambda=-\frac{1}{2}$, determine the cosine of $\angle A O B$ and describe the relative positions of A, B and D.

6 For any given function f, let

$$
\begin{equation*}
I=\int\left[\mathrm{f}^{\prime}(x)\right]^{2}[\mathrm{f}(x)]^{n} \mathrm{~d} x, \tag{*}
\end{equation*}
$$

where n is a positive integer. Show that, if $\mathrm{f}(x)$ satisfies $\mathrm{f}^{\prime \prime}(x)=k \mathrm{f}(x) \mathrm{f}^{\prime}(x)$ for some constant k, then $(*)$ can be integrated to obtain an expression for I in terms of $\mathrm{f}(x), \mathrm{f}^{\prime}(x), k$ and n.
(i) Verify your result in the case $\mathrm{f}(x)=\tan x$. Hence find

$$
\int \frac{\sin ^{4} x}{\cos ^{8} x} \mathrm{~d} x .
$$

(ii) Find

$$
\int \sec ^{2} x(\sec x+\tan x)^{6} \mathrm{~d} x .
$$

7 The two sequences $a_{0}, a_{1}, a_{2}, \ldots$ and $b_{0}, b_{1}, b_{2}, \ldots$ have general terms

$$
a_{n}=\lambda^{n}+\mu^{n} \quad \text { and } \quad b_{n}=\lambda^{n}-\mu^{n},
$$

respectively, where $\lambda=1+\sqrt{2}$ and $\mu=1-\sqrt{2}$.
(i) Show that $\sum_{r=0}^{n} b_{r}=-\sqrt{2}+\frac{1}{\sqrt{2}} a_{n+1}$, and give a corresponding result for $\sum_{r=0}^{n} a_{r}$.
(ii) Show that, if n is odd,

$$
\sum_{m=0}^{2 n}\left(\sum_{r=0}^{m} a_{r}\right)=\frac{1}{2} b_{n+1}^{2},
$$

and give a corresponding result when n is even.
(iii) Show that, if n is even,

$$
\left(\sum_{r=0}^{n} a_{r}\right)^{2}-\sum_{r=0}^{n} a_{2 r+1}=2,
$$

and give a corresponding result when n is odd.

8 The end A of an inextensible string $A B$ of length π is attached to a point on the circumference of a fixed circle of unit radius and centre O. Initially the string is straight and tangent to the circle. The string is then wrapped round the circle until the end B comes into contact with the circle. The string remains taut during the motion, so that a section of the string is in contact with the circumference and the remaining section is straight.
Taking O to be the origin of cartesian coordinates with A at $(-1,0)$ and B initially at ($-1, \pi$), show that the curve described by B is given parametrically by

$$
x=\cos t+t \sin t, \quad y=\sin t-t \cos t,
$$

where t is the angle shown in the diagram.

Find the value, t_{0}, of t for which x takes its maximum value on the curve, and sketch the curve.
Use the area integral $\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$ to find the area between the curve and the x axis for $\pi \geqslant t \geqslant t_{0}$. Find the area swept out by the string (that is, the area between the curve described by B and the semicircle shown in the diagram).

Section B: Mechanics

9 Two particles, A of mass $2 m$ and B of mass m, are moving towards each other in a straight line on a smooth horizontal plane, with speeds $2 u$ and u respectively. They collide directly. Given that the coefficient of restitution between the particles is e, where $0<e \leqslant 1$, determine the speeds of the particles after the collision.
After the collision, B collides directly with a smooth vertical wall, rebounding and then colliding directly with A for a second time. The coefficient of restitution between B and the wall is f, where $0<f \leqslant 1$. Show that the velocity of B after its second collision with A is

$$
\frac{2}{3}\left(1-e^{2}\right) u-\frac{1}{3}\left(1-4 e^{2}\right) f u
$$

towards the wall and that B moves towards (not away from) the wall for all values of e and f.

10 A particle is projected from a point on a horizontal plane, at speed u and at an angle θ above the horizontal. Let H be the maximum height of the particle above the plane. Derive an expression for H in terms of u, g and θ.
A particle P is projected from a point O on a smooth horizontal plane, at speed u and at an angle θ above the horizontal. At the same instant, a second particle R is projected horizontally from O in such a way that R is vertically below P in the ensuing motion. A light inextensible string of length $\frac{1}{2} H$ connects P and R. Show that the time that elapses before the string becomes taut is

$$
(\sqrt{2}-1) \sqrt{H / g} .
$$

When the string becomes taut, R leaves the plane, the string remaining taut. Given that P and R have equal masses, determine the total horizontal distance, D, travelled by R from the moment its motion begins to the moment it lands on the plane again, giving your answer in terms of u, g and θ.
Given that $D=H$, find the value of $\tan \theta$.

11 Three non-collinear points A, B and C lie in a horizontal ceiling. A particle P of weight W is suspended from this ceiling by means of three light inextensible strings $A P, B P$ and $C P$, as shown in the diagram. The point O lies vertically above P in the ceiling.

The angles $A O B$ and $A O C$ are $90^{\circ}+\theta$ and $90^{\circ}+\phi$, respectively, where θ and ϕ are acute angles such that $\tan \theta=\sqrt{2}$ and $\tan \phi=\frac{1}{4} \sqrt{2}$.
The strings $A P, B P$ and $C P$ make angles $30^{\circ}, 90^{\circ}-\theta$ and 60°, respectively, with the vertical, and the tensions in these strings have magnitudes T, U and V respectively.
(i) Show that the unit vector in the direction $P B$ can be written in the form

$$
-\frac{1}{3} \mathbf{i}-\frac{\sqrt{2}}{3} \mathbf{j}+\frac{\sqrt{2}}{\sqrt{3}} \mathbf{k},
$$

where \mathbf{i}, \mathbf{j} and \mathbf{k} are the usual mutually perpendicular unit vectors with \mathbf{j} parallel to $O A$ and k vertically upwards.
(ii) Find expressions in vector form for the forces acting on P.
(iii) Show that $U=\sqrt{6} V$ and find T, U and V in terms of W.

Section C: Probability and Statistics

12 Xavier and Younis are playing a match. The match consists of a series of games and each game consists of three points.
Xavier has probability p and Younis has probability $1-p$ of winning the first point of any game. In the second and third points of each game, the player who won the previous point has probability p and the player who lost the previous point has probability $1-p$ of winning the point. If a player wins two consecutive points in a single game, the match ends and that player has won; otherwise the match continues with another game.
(i) Let w be the probability that Younis wins the match. Show that, for $p \neq 0$,

$$
w=\frac{1-p^{2}}{2-p} .
$$

Show that $w>\frac{1}{2}$ if $p<\frac{1}{2}$, and $w<\frac{1}{2}$ if $p>\frac{1}{2}$. Does w increase whenever p decreases?
(ii) If Xavier wins the match, Younis gives him $£ 1$; if Younis wins the match, Xavier gives him $£ k$. Find the value of k for which the game is 'fair' in the case when $p=\frac{2}{3}$.
(iii) What happens when $p=0$?

13 What property of a distribution is measured by its skewness?
(i) One measure of skewness, γ, is given by

$$
\gamma=\frac{\mathrm{E}\left((X-\mu)^{3}\right)}{\sigma^{3}},
$$

where μ and σ^{2} are the mean and variance of the random variable X. Show that

$$
\gamma=\frac{\mathrm{E}\left(X^{3}\right)-3 \mu \sigma^{2}-\mu^{3}}{\sigma^{3}}
$$

The continuous random variable X has probability density function f where

$$
\mathrm{f}(x)= \begin{cases}2 x & \text { for } 0 \leqslant x \leqslant 1 \\ 0 & \text { otherwise } .\end{cases}
$$

Show that for this distribution $\gamma=-\frac{2 \sqrt{2}}{5}$.
(ii) The decile skewness, D, of a distribution is defined by

$$
D=\frac{\mathrm{F}^{-1}\left(\frac{9}{10}\right)-2 \mathrm{~F}^{-1}\left(\frac{1}{2}\right)+\mathrm{F}^{-1}\left(\frac{1}{10}\right)}{\mathrm{F}^{-1}\left(\frac{9}{10}\right)-\mathrm{F}^{-1}\left(\frac{1}{10}\right)},
$$

where F^{-1} is the inverse of the cumulative distribution function. Show that, for the above distribution, $D=2-\sqrt{5}$.

The Pearson skewness, P, of a distribution is defined by

$$
P=\frac{3(\mu-M)}{\sigma},
$$

where M is the median. Find P for the above distribution and show that $D>P>\gamma$.

