Section A: Pure Mathematics

1 The line L has equation $y=c-m x$, with $m>0$ and $c>0$. It passes through the point $R(a, b)$ and cuts the axes at the points $P(p, 0)$ and $Q(0, q)$, where a, b, p and q are all positive. Find p and q in terms of a, b and m.
As L varies with R remaining fixed, show that the minimum value of the sum of the distances of P and Q from the origin is $\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^{2}$, and find in a similar form the minimum distance between P and Q. (You may assume that any stationary values of these distances are minima.)

2 (i) Sketch the curve $y=x^{4}-6 x^{2}+9$ giving the coordinates of the stationary points.
Let n be the number of distinct real values of x for which

$$
x^{4}-6 x^{2}+b=0 .
$$

State the values of b, if any, for which (a) $n=0$; (b) $n=1$; (c) $n=2$; (d) $n=3$; (e) $n=4$.
(ii) For which values of a does the curve $y=x^{4}-6 x^{2}+a x+b$ have a point at which both $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$?

For these values of a, find the number of distinct real values of x for which

$$
x^{4}-6 x^{2}+a x+b=0,
$$

in the different cases that arise according to the value of b.
(iii) Sketch the curve $y=x^{4}-6 x^{2}+a x$ in the case $a>8$.

3 (i) Sketch the curve $y=\sin x$ for $0 \leqslant x \leqslant \frac{1}{2} \pi$ and add to your diagram the tangent to the curve at the origin and the chord joining the origin to the point $(b, \sin b)$, where $0<b<$ $\frac{1}{2} \pi$.

By considering areas, show that

$$
1-\frac{1}{2} b^{2}<\cos b<1-\frac{1}{2} b \sin b
$$

(ii) By considering the curve $y=a^{x}$, where $a>1$, show that

$$
\frac{2(a-1)}{a+1}<\ln a<-1+\sqrt{2 a-1} .
$$

[Hint: You may wish to write a^{x} as $\mathrm{e}^{x \ln a}$.]

4 The curve C has equation $x y=\frac{1}{2}$. The tangents to C at the distinct points $P\left(p, \frac{1}{2 p}\right)$ and $Q\left(q, \frac{1}{2 q}\right)$, where p and q are positive, intersect at T and the normals to C at these points intersect at N. Show that T is the point

$$
\left(\frac{2 p q}{p+q}, \frac{1}{p+q}\right) .
$$

In the case $p q=\frac{1}{2}$, find the coordinates of N. Show (in this case) that T and N lie on the line $y=x$ and are such that the product of their distances from the origin is constant.

5 Show that

$$
\int_{0}^{\frac{1}{4} \pi} \sin (2 x) \ln (\cos x) \mathrm{d} x=\frac{1}{4}(\ln 2-1),
$$

and that

$$
\int_{0}^{\frac{1}{4} \pi} \cos (2 x) \ln (\cos x) \mathrm{d} x=\frac{1}{8}(\pi-\ln 4-2) .
$$

Hence evaluate

$$
\int_{\frac{1}{4} \pi}^{\frac{1}{2} \pi}(\cos (2 x)+\sin (2 x)) \ln (\cos x+\sin x) d x
$$

6 A thin circular path with diameter $A B$ is laid on horizontal ground. A vertical flagpole is erected with its base at a point D on the diameter $A B$. The angles of elevation of the top of the flagpole from A and B are α and β respectively (both are acute). The point C lies on the circular path with $D C$ perpendicular to $A B$ and the angle of elevation of the top of the flagpole from C is ϕ. Show that $\cot \alpha \cot \beta=\cot ^{2} \phi$.
Show that, for any p and q,

$$
\cos p \cos q \sin ^{2} \frac{1}{2}(p+q)-\sin p \sin q \cos ^{2} \frac{1}{2}(p+q)=\frac{1}{2} \cos (p+q)-\frac{1}{2} \cos (p+q) \cos (p-q) .
$$

Deduce that, if p and q are positive and $p+q \leqslant \frac{1}{2} \pi$, then

$$
\cot p \cot q \geqslant \cot ^{2} \frac{1}{2}(p+q)
$$

and hence show that $\phi \leqslant \frac{1}{2}(\alpha+\beta)$ when $\alpha+\beta \leqslant \frac{1}{2} \pi$.

7 A sequence of numbers $t_{0}, t_{1}, t_{2}, \ldots$ satisfies

$$
t_{n+2}=p t_{n+1}+q t_{n} \quad(n \geqslant 0),
$$

where p and q are real. Throughout this question, x, y and z are non-zero real numbers.
(i) Show that, if $t_{n}=x$ for all values of n, then $p+q=1$ and x can be any (non-zero) real number.
(ii) Show that, if $t_{2 n}=x$ and $t_{2 n+1}=y$ for all values of n, then $q \pm p=1$. Deduce that either $x=y$ or $x=-y$, unless p and q take certain values that you should identify.
(iii) Show that, if $t_{3 n}=x, t_{3 n+1}=y$ and $t_{3 n+2}=z$ for all values of n, then

$$
p^{3}+q^{3}+3 p q-1=0 .
$$

Deduce that either $p+q=1$ or $(p-q)^{2}+(p+1)^{2}+(q+1)^{2}=0$. Hence show that either $x=y=z$ or $x+y+z=0$.

8 (i) Show that substituting $y=x v$, where v is a function of x, in the differential equation

$$
x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}-2 x^{2}=0 \quad(x \neq 0)
$$

leads to the differential equation

$$
x v \frac{\mathrm{~d} v}{\mathrm{~d} x}+2 v^{2}-2=0 .
$$

Hence show that the general solution can be written in the form

$$
x^{2}\left(y^{2}-x^{2}\right)=C,
$$

where C is a constant.
(ii) Find the general solution of the differential equation

$$
y \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 x+5 y=0 \quad(x \neq 0)
$$

Section B: Mechanics

9 A tall shot-putter projects a small shot from a point 2.5 m above the ground, which is horizontal. The speed of projection is $10 \mathrm{~m} \mathrm{~s}^{-1}$ and the angle of projection is θ above the horizontal. Taking the acceleration due to gravity to be $10 \mathrm{~m} \mathrm{~s}^{-2}$, show that the time, in seconds, that elapses before the shot hits the ground is

$$
\frac{1}{\sqrt{2}}(\sqrt{1-c}+\sqrt{2-c})
$$

where $c=\cos 2 \theta$.
Find an expression for the range in terms of c and show that it is greatest when $c=\frac{1}{5}$.
Show that the extra distance attained by projecting the shot at this angle rather than at an angle of 45° is $5(\sqrt{6}-\sqrt{2}-1) \mathrm{m}$.

10 I stand at the top of a vertical well. The depth of the well, from the top to the surface of the water, is D. I drop a stone from the top of the well and measure the time that elapses between the release of the stone and the moment when I hear the splash of the stone entering the water.

In order to gauge the depth of the well, I climb a distance δ down into the well and drop a stone from my new position. The time until I hear the splash is t less than the previous time. Show that

$$
t=\sqrt{\frac{2 D}{g}}-\sqrt{\frac{2(D-\delta)}{g}}+\frac{\delta}{u},
$$

where u is the (constant) speed of sound. Hence show that

$$
D=\frac{1}{2} g T^{2},
$$

where $T=\frac{1}{2} \beta+\frac{\delta}{\beta g}$ and $\beta=t-\frac{\delta}{u}$.
Taking $u=300 \mathrm{~m} \mathrm{~s}^{-1}$ and $g=10 \mathrm{~m} \mathrm{~s}^{-2}$, show that if $t=\frac{1}{5} \mathrm{~s}$ and $\delta=10 \mathrm{~m}$, the well is approximately 185 m deep.

11 The diagram shows two particles, A of mass $5 m$ and B of mass $3 m$, connected by a light inextensible string which passes over two smooth, light, fixed pulleys, Q and R, and under a smooth pulley P which has mass M and is free to move vertically.
Particles A and B lie on fixed rough planes inclined to the horizontal at angles of arctan $\frac{7}{24}$ and $\arctan \frac{4}{3}$ respectively. The segments $A Q$ and $R B$ of the string are parallel to their respective planes, and segments $Q P$ and $P R$ are vertical. The coefficient of friction between each particle and its plane is μ.

(i) Given that the system is in equilibrium, with both A and B on the point of moving up their planes, determine the value of μ and show that $M=6 \mathrm{~m}$.
(ii) In the case when $M=9 m$, determine the initial accelerations of A, B and P in terms of g.

Section C: Probability and Statistics

12 Fire extinguishers may become faulty at any time after manufacture and are tested annually on the anniversary of manufacture.
The time T years after manufacture until a fire extinguisher becomes faulty is modelled by the continuous probability density function

$$
\mathrm{f}(t)=\left\{\begin{array}{cl}
\frac{2 t}{\left(1+t^{2}\right)^{2}} & \text { for } t \geqslant 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

A faulty fire extinguisher will fail an annual test with probability p, in which case it is destroyed immediately. A non-faulty fire extinguisher will always pass the test. All of the annual tests are independent.

Show that the probability that a randomly chosen fire extinguisher will be destroyed exactly three years after its manufacture is $p\left(5 p^{2}-13 p+9\right) / 10$.
Find the probability that a randomly chosen fire extinguisher that was destroyed exactly three years after its manufacture was faulty 18 months after its manufacture.

13 I choose at random an integer in the range 10000 to 99999 , all choices being equally likely. Given that my choice does not contain the digits $0,6,7,8$ or 9 , show that the expected number of different digits in my choice is 3.3616 .

