Section A: Pure Mathematics

1 (i) Find the value of m for which the line y = mx touches the curve $y = \ln x$.

If instead the line intersects the curve when x = a and x = b, where a < b, show that $a^b = b^a$. Show by means of a sketch that a < e < b.

- (ii) The line y = mx + c, where c > 0, intersects the curve $y = \ln x$ when x = p and x = q, where p < q. Show by means of a sketch, or otherwise, that $p^q > q^p$.
- (iii) Show by means of a sketch that the straight line through the points $(p, \ln p)$ and $(q, \ln q)$, where $e \leq p < q$, intersects the *y*-axis at a positive value of *y*. Which is greater, π^e or e^{π} ?
- (iv) Show, using a sketch or otherwise, that if $0 and <math>\frac{\ln q \ln p}{q p} = e^{-1}$, then $q^p > p^q$.
- **2** For $n \ge 0$, let

$$I_n = \int_0^1 x^n (1-x)^n \mathrm{d}x$$

(i) For $n \ge 1$, show by means of a substitution that

$$\int_0^1 x^{n-1} (1-x)^n \mathrm{d}x = \int_0^1 x^n (1-x)^{n-1} \mathrm{d}x$$

and deduce that

$$2\int_0^1 x^{n-1}(1-x)^n \mathrm{d}x = I_{n-1}.$$

Show also, for $n \ge 1$, that

$$I_n = \frac{n}{n+1} \int_0^1 x^{n-1} (1-x)^{n+1} \mathrm{d}x$$

and hence that $I_n = \frac{n}{2(2n+1)}I_{n-1}$.

(ii) When n is a positive integer, show that

$$I_n = \frac{(n!)^2}{(2n+1)!}$$

(iii) Use the substitution $x = \sin^2 \theta$ to show that $I_{\frac{1}{2}} = \frac{\pi}{8}$, and evaluate $I_{\frac{3}{2}}$.

- 3 (i) Given that the cubic equation $x^3 + 3ax^2 + 3bx + c = 0$ has three distinct real roots and c < 0, show with the help of sketches that either exactly one of the roots is positive or all three of the roots are positive.
 - (ii) Given that the equation $x^3 + 3ax^2 + 3bx + c = 0$ has three distinct real positive roots show that

$$a^2 > b > 0, \quad a < 0, \quad c < 0.$$
 (*)

[Hint: Consider the turning points.]

(iii) Given that the equation $x^3 + 3ax^2 + 3bx + c = 0$ has three distinct real roots and that

 $ab < 0, \quad c > 0,$

determine, with the help of sketches, the signs of the roots.

- (iv) Show by means of an explicit example (giving values for *a*, *b* and *c*) that it is possible for the conditions (*) to be satisfied even though the corresponding cubic equation has only one real root.
- 4 The line passing through the point (a, 0) with gradient *b* intersects the circle of unit radius centred at the origin at *P* and *Q*, and *M* is the midpoint of the chord *PQ*. Find the coordinates of *M* in terms of *a* and *b*.
 - (i) Suppose *b* is fixed and positive. As *a* varies, *M* traces out a curve (the *locus* of *M*). Show that x = -by on this curve. Given that *a* varies with $-1 \le a \le 1$, show that the locus is a line segment of length $2b/(1+b^2)^{\frac{1}{2}}$. Give a sketch showing the locus and the unit circle.
 - (ii) Find the locus of M in the following cases, giving in each case its cartesian equation, describing it geometrically and sketching it in relation to the unit circle:
 - (a) *a* is fixed with 0 < a < 1, and *b* varies with $-\infty < b < \infty$;
 - (b) ab = 1, and b varies with $0 < b \leq 1$.

- 5 (i) A function f(x) satisfies f(x) = f(1 x) for all x. Show, by differentiating with respect to x, that $f'(\frac{1}{2}) = 0$. If, in addition, $f(x) = f(\frac{1}{x})$ for all (non-zero) x, show that f'(-1) = 0 and that f'(2) = 0.
 - (ii) The function f is defined, for $x \neq 0$ and $x \neq 1$, by

$$\mathbf{f}(x) = \frac{(x^2 - x + 1)^3}{(x^2 - x)^2} \,.$$

Show that $f(x) = f(\frac{1}{x})$ and f(x) = f(1 - x).

Given that it has exactly three stationary points, sketch the curve y = f(x).

(iii) Hence, or otherwise, find all the roots of the equation $f(x) = \frac{27}{4}$ and state the ranges of values of x for which $f(x) > \frac{27}{4}$.

Find also all the roots of the equation $f(x) = \frac{343}{36}$ and state the ranges of values of x for which $f(x) > \frac{343}{36}$.

6 In this question, the following theorem may be used.

Let u_1, u_2, \ldots be a sequence of (real) numbers. If the sequence is bounded above (that is, $u_n \leq b$ for all n, where b is some fixed number) and increasing (that is, $u_n \geq u_{n-1}$ for all n), then the sequence tends to a limit (that is, converges).

The sequence u_1, u_2, \ldots is defined by $u_1 = 1$ and

$$u_{n+1} = 1 + \frac{1}{u_n}$$
 $(n \ge 1)$. (*)

(i) Show that, for $n \ge 3$,

$$u_{n+2} - u_n = \frac{u_n - u_{n-2}}{(1 + u_n)(1 + u_{n-2})}.$$

- (ii) Prove, by induction or otherwise, that $1 \leq u_n \leq 2$ for all n.
- (iii) Show that the sequence u_1, u_3, u_5, \ldots tends to a limit, and that the sequence u_2, u_4, u_6, \ldots tends to a limit. Find these limits and deduce that the sequence u_1, u_2, u_3, \ldots tends to a limit.

Would this conclusion change if the sequence were defined by (*) and $u_1 = 3$?

7 (i) Write down a solution of the equation

$$x^2 - 2y^2 = 1, (*)$$

for which x and y are non-negative integers.

Show that, if x = p, y = q is a solution of (*), then so also is x = 3p + 4q, y = 2p + 3q. Hence find two solutions of (*) for which x is a positive odd integer and y is a positive even integer.

(ii) Show that, if x is an odd integer and y is an even integer, (*) can be written in the form $n^2 = \frac{1}{2}m(m+1),$

where m and n are integers.

(iii) The positive integers *a*, *b* and *c* satisfy

$$b^3 = c^4 - a^2$$
,

where b is a prime number. Express a and c^2 in terms of b in the two cases that arise.

Find a solution of $a^2 + b^3 = c^4$, where *a*, *b* and *c* are positive integers but *b* is not prime.

- 8 The function f satisfies f(x) > 0 for $x \ge 0$ and is strictly decreasing (which means that f(b) < f(a) for b > a).
 - (i) For $t \ge 0$, let $A_0(t)$ be the area of the largest rectangle with sides parallel to the coordinate axes that can fit in the region bounded by the curve y = f(x), the *y*-axis and the line y = f(t). Show that $A_0(t)$ can be written in the form

$$A_0(t) = x_0 (f(x_0) - f(t)),$$

where x_0 satisfies $x_0 f'(x_0) + f(x_0) = f(t)$.

(ii) The function g is defined, for t > 0, by

$$g(t) = \frac{1}{t} \int_0^t f(x) \mathrm{d}x.$$

Show that tg'(t) = f(t) - g(t).

Making use of a sketch show that, for t > 0,

$$\int_{0}^{t} (f(x) - f(t)) \, \mathrm{d}x > A_{0}(t)$$

and deduce that $-t^2 \mathbf{g}'(t) > A_0(t)$.

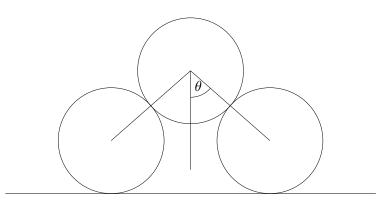
(iii) In the case
$$f(x) = \frac{1}{1+x}$$
, use the above to establish the inequality

$$\ln\sqrt{1+t} > 1 - \frac{1}{\sqrt{1+t}}\,,$$

for t > 0.

Section B: Mechanics

9 The diagram shows three identical discs in equilibrium in a vertical plane. Two discs rest, not in contact with each other, on a horizontal surface and the third disc rests on the other two. The angle at the upper vertex of the triangle joining the centres of the discs is 2θ .



The weight of each disc is W. The coefficient of friction between a disc and the horizontal surface is μ and the coefficient of friction between the discs is also μ .

- (i) Show that the normal reaction between the horizontal surface and a disc in contact with the surface is $\frac{3}{2}W$.
- (ii) Find the normal reaction between two discs in contact and show that the magnitude of the frictional force between two discs in contact is $\frac{W \sin \theta}{2(1 + \cos \theta)}$.
- (iii) Show that if $\mu < 2 \sqrt{3}$ there is no value of θ for which equilibrium is possible.

10 A particle is projected at an angle of elevation α (where $\alpha > 0$) from a point *A* on horizontal ground. At a general point in its trajectory the angle of elevation of the particle from *A* is θ and its direction of motion is at an angle ϕ above the horizontal (with $\phi \ge 0$ for the first half of the trajectory and $\phi \le 0$ for the second half).

Let *B* denote the point on the trajectory at which $\theta = \frac{1}{2}\alpha$ and let *C* denote the point on the trajectory at which $\phi = -\frac{1}{2}\alpha$.

- (i) Show that, at a general point on the trajectory, $2 \tan \theta = \tan \alpha + \tan \phi$.
- (ii) Show that, if B and C are the same point, then $\alpha = 60^{\circ}$.
- (iii) Given that $\alpha < 60^{\circ}$, determine whether the particle reaches the point *B* first or the point *C* first.
- **11** Three identical particles lie, not touching one another, in a straight line on a smooth horizontal surface. One particle is projected with speed u directly towards the other two which are at rest. The coefficient of restitution in all collisions is e, where 0 < e < 1.
 - (i) Show that, after the second collision, the speeds of the particles are $\frac{1}{2}u(1-e)$, $\frac{1}{4}u(1-e^2)$ and $\frac{1}{4}u(1+e)^2$. Deduce that there will be a third collision whatever the value of *e*.
 - (ii) Show that there will be a fourth collision if and only if e is less than a particular value which you should determine.

Section C: Probability and Statistics

12 The random variable *U* has a Poisson distribution with parameter λ . The random variables *X* and *Y* are defined as follows.

$$X = \begin{cases} U & \text{if } U \text{ is 1, 3, 5, 7, ...} \\ 0 & \text{otherwise} \end{cases}$$
$$Y = \begin{cases} U & \text{if } U \text{ is 2, 4, 6, 8, ...} \\ 0 & \text{otherwise} \end{cases}$$

(i) Find E(X) and E(Y) in terms of λ , α and β , where

$$\alpha = 1 + \frac{\lambda^2}{2!} + \frac{\lambda^4}{4!} + \cdots$$
 and $\beta = \frac{\lambda}{1!} + \frac{\lambda^3}{3!} + \frac{\lambda^5}{5!} + \cdots$

(ii) Show that

$$\operatorname{Var}(X) = \frac{\lambda \alpha + \lambda^2 \beta}{\alpha + \beta} - \frac{\lambda^2 \alpha^2}{(\alpha + \beta)^2}$$

and obtain the corresponding expression for Var(Y). Are there any non-zero values of λ for which Var(X) + Var(Y) = Var(X + Y)?

13 A biased coin has probability p of showing a head and probability q of showing a tail, where $p \neq 0, q \neq 0$ and $p \neq q$. When the coin is tossed repeatedly, runs occur. A *straight run* of length n is a sequence of n consecutive heads or n consecutive tails. An *alternating run* of length n is a sequence of length n alternating between heads and tails. An alternating run can start with either a head or a tail.

Let S be the length of the longest straight run beginning with the first toss and let A be the length of the longest alternating run beginning with the first toss.

- (i) Explain why $P(A = 1) = p^2 + q^2$ and find P(S = 1). Show that P(S = 1) < P(A = 1).
- (ii) Show that P(S = 2) = P(A = 2) and determine the relationship between P(S = 3) and P(A = 3).
- (iii) Show that, for n > 1, P(S = 2n) > P(A = 2n) and determine the corresponding relationship between P(S = 2n + 1) and P(A = 2n + 1). [You are advised *not* to use p + q = 1 in this part.]