## Section A: Pure Mathematics

1 Given that $t=\tan \frac{1}{2} x$, show that $\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{1}{2}\left(1+t^{2}\right)$ and $\sin x=\frac{2 t}{1+t^{2}}$.
Hence show that

$$
\int_{0}^{\frac{1}{2} \pi} \frac{1}{1+a \sin x} \mathrm{~d} x=\frac{2}{\sqrt{1-a^{2}}} \arctan \frac{\sqrt{1-a}}{\sqrt{1+a}} \quad(0<a<1)
$$

Let

$$
I_{n}=\int_{0}^{\frac{1}{2} \pi} \frac{\sin ^{n} x}{2+\sin x} \mathrm{~d} x \quad(n \geqslant 0)
$$

By considering $I_{n+1}+2 I_{n}$, or otherwise, evaluate $I_{3}$.

2 In this question, you may ignore questions of convergence.
Let $y=\frac{\arcsin x}{\sqrt{1-x^{2}}}$. Show that

$$
\left(1-x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-x y-1=0
$$

and prove that, for any positive integer $n$,

$$
\left(1-x^{2}\right) \frac{\mathrm{d}^{n+2} y}{\mathrm{~d} x^{n+2}}-(2 n+3) x \frac{\mathrm{~d}^{n+1} y}{\mathrm{~d} x^{n+1}}-(n+1)^{2} \frac{\mathrm{~d}^{n} y}{\mathrm{~d} x^{n}}=0
$$

Hence obtain the Maclaurin series for $\frac{\arcsin x}{\sqrt{1-x^{2}}}$, giving the general term for odd and for even powers of $x$.
Evaluate the infinite sum

$$
1+\frac{1}{3!}+\frac{2^{2}}{5!}+\frac{2^{2} \times 3^{2}}{7!}+\cdots+\frac{2^{2} \times 3^{2} \times \cdots \times n^{2}}{(2 n+1)!}+\cdots
$$

3 The four vertices $P_{i}(i=1,2,3,4)$ of a regular tetrahedron lie on the surface of a sphere with centre at $O$ and of radius 1 . The position vector of $P_{i}$ with respect to $O$ is $\mathbf{p}_{i}(i=1,2,3,4)$. Use the fact that $\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}+\mathbf{p}_{4}=\mathbf{0}$ to show that $\mathbf{p}_{i} \cdot \mathbf{p}_{j}=-\frac{1}{3}$ for $i \neq j$.
Let $X$ be any point on the surface of the sphere, and let $X P_{i}$ denote the length of the line joining $X$ and $P_{i}(i=1,2,3,4)$.
(i) By writing $\left(X P_{i}\right)^{2}$ as $\left(\mathbf{p}_{i}-\mathbf{x}\right) \cdot\left(\mathbf{p}_{i}-\mathbf{x}\right)$, where $\mathbf{x}$ is the position vector of $X$ with respect to $O$, show that

$$
\sum_{i=1}^{4}\left(X P_{i}\right)^{2}=8 .
$$

(ii) Given that $P_{1}$ has coordinates $(0,0,1)$ and that the coordinates of $P_{2}$ are of the form $(a, 0, b)$, where $a>0$, show that $a=2 \sqrt{2} / 3$ and $b=-1 / 3$, and find the coordinates of $P_{3}$ and $P_{4}$.
(iii) Show that

$$
\sum_{i=1}^{4}\left(X P_{i}\right)^{4}=4 \sum_{i=1}^{4}\left(1-\mathbf{x} \cdot \mathbf{p}_{i}\right)^{2} .
$$

By letting the coordinates of $X$ be $(x, y, z)$, show further that $\sum_{i=1}^{4}\left(X P_{i}\right)^{4}$ is independent of the position of $X$.

4 Show that $\left(z-\mathrm{e}^{\mathrm{i} \theta}\right)\left(z-\mathrm{e}^{-\mathrm{i} \theta}\right)=z^{2}-2 z \cos \theta+1$.
Write down the $(2 n)$ th roots of -1 in the form $\mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<\theta \leqslant \pi$, and deduce that

$$
z^{2 n}+1=\prod_{k=1}^{n}\left(z^{2}-2 z \cos \left(\frac{(2 k-1) \pi}{2 n}\right)+1\right) .
$$

Here, $n$ is a positive integer, and the $\Pi$ notation denotes the product.
(i) By substituting $z=\mathrm{i}$ show that, when $n$ is even,

$$
\cos \left(\frac{\pi}{2 n}\right) \cos \left(\frac{3 \pi}{2 n}\right) \cos \left(\frac{5 \pi}{2 n}\right) \cdots \cos \left(\frac{(2 n-1) \pi}{2 n}\right)=(-1)^{\frac{1}{2} n} 2^{1-n} .
$$

(ii) Show that, when $n$ is odd,

$$
\cos ^{2}\left(\frac{\pi}{2 n}\right) \cos ^{2}\left(\frac{3 \pi}{2 n}\right) \cos ^{2}\left(\frac{5 \pi}{2 n}\right) \cdots \cos ^{2}\left(\frac{(n-2) \pi}{2 n}\right)=n 2^{1-n} .
$$

You may use without proof the fact that $1+z^{2 n}=\left(1+z^{2}\right)\left(1-z^{2}+z^{4}-\cdots+z^{2 n-2}\right)$ when $n$ is odd.

5 In this question, you may assume that, if $a, b$ and $c$ are positive integers such that $a$ and $b$ are coprime and $a$ divides $b c$, then $a$ divides $c$. (Two positive integers are said to be coprime if their highest common factor is 1 .)
(i) Suppose that there are positive integers $p, q, n$ and $N$ such that $p$ and $q$ are coprime and $q^{n} N=p^{n}$. Show that $N=k p^{n}$ for some positive integer $k$ and deduce the value of $q$.

Hence prove that, for any positive integers $n$ and $N, \sqrt[n]{N}$ is either a positive integer or irrational.
(ii) Suppose that there are positive integers $a, b, c$ and $d$ such that $a$ and $b$ are coprime and $c$ and $d$ are coprime, and $a^{a} d^{b}=b^{a} c^{b}$. Prove that $d^{b}=b^{a}$ and deduce that, if $p$ is a prime factor of $d$, then $p$ is also a prime factor of $b$.

If $p^{m}$ and $p^{n}$ are the highest powers of the prime number $p$ that divide $d$ and $b$, respectively, express $b$ in terms of $a, m$ and $n$ and hence show that $p^{n} \leqslant n$. Deduce the value of $b$. (You may assume that if $x>0$ and $y \geqslant 2$ then $y^{x}>x$.)

Hence prove that, if $r$ is a positive rational number such that $r^{r}$ is rational, then $r$ is a positive integer.
$6 \quad$ Let $z$ and $w$ be complex numbers. Use a diagram to show that $|z-w| \leqslant|z|+|w|$.
For any complex numbers $z$ and $w, E$ is defined by

$$
E=z w^{*}+z^{*} w+2|z w| .
$$

(i) Show that $|z-w|^{2}=(|z|+|w|)^{2}-E$, and deduce that $E$ is real and non-negative.
(ii) Show that $\left|1-z w^{*}\right|^{2}=(1+|z w|)^{2}-E$.

Hence show that, if both $|z|>1$ and $|w|>1$, then

$$
\frac{|z-w|}{\left|1-z w^{*}\right|} \leqslant \frac{|z|+|w|}{1+|z w|} .
$$

Does this inequality also hold if both $|z|<1$ and $|w|<1$ ?

7 (i) Let $y(x)$ be a solution of the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y^{3}=0$ with $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ at $x=0$, and let

$$
\mathrm{E}(x)=\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+\frac{1}{2} y^{4}
$$

Show by differentiation that E is constant and deduce that $|y(x)| \leqslant 1$ for all $x$.
(ii) Let $v(x)$ be a solution of the differential equation $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} v}{\mathrm{~d} x}+\sinh v=0$ with $v=\ln 3$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}=0$ at $x=0$, and let

$$
\mathrm{E}(x)=\left(\frac{\mathrm{d} v}{\mathrm{~d} x}\right)^{2}+2 \cosh v
$$

Show that $\frac{\mathrm{dE}}{\mathrm{d} x} \leqslant 0$ for $x \geqslant 0$ and deduce that $\cosh v(x) \leqslant \frac{5}{3}$ for $x \geqslant 0$.
(iii) Let $w(x)$ be a solution of the differential equation

$$
\frac{\mathrm{d}^{2} w}{\mathrm{~d} x^{2}}+(5 \cosh x-4 \sinh x-3) \frac{\mathrm{d} w}{\mathrm{~d} x}+(w \cosh w+2 \sinh w)=0
$$

with $\frac{\mathrm{d} w}{\mathrm{~d} x}=\frac{1}{\sqrt{2}}$ and $w=0$ at $x=0$. Show that $\cosh w(x) \leqslant \frac{5}{4}$ for $x \geqslant 0$.

8 Evaluate $\sum_{r=0}^{n-1} \mathrm{e}^{2 \mathrm{i}(\alpha+r \pi / n)}$ where $\alpha$ is a fixed angle and $n \geqslant 2$.
The fixed point $O$ is a distance $d$ from a fixed line $D$. For any point $P$, let $s$ be the distance from $P$ to $D$ and let $r$ be the distance from $P$ to $O$. Write down an expression for $s$ in terms of $d, r$ and the angle $\theta$, where $\theta$ is as shown in the diagram below.


The curve $E$ shown in the diagram is such that, for any point $P$ on $E$, the relation $r=k s$ holds, where $k$ is a fixed number with $0<k<1$.
Each of the $n$ lines $L_{1}, \ldots, L_{n}$ passes through $O$ and the angle between adjacent lines is $\frac{\pi}{n}$. The line $L_{j}(j=1, \ldots, n)$ intersects $E$ in two points forming a chord of length $l_{j}$. Show that, for $n \geqslant 2$,

$$
\sum_{j=1}^{n} \frac{1}{l_{j}}=\frac{\left(2-k^{2}\right) n}{4 k d} .
$$

## Section B: Mechanics

9 A sphere of radius $R$ and uniform density $\rho_{\mathrm{s}}$ is floating in a large tank of liquid of uniform density $\rho$. Given that the centre of the sphere is a distance $x$ above the level of the liquid, where $x<R$, show that the volume of liquid displaced is

$$
\frac{\pi}{3}\left(2 R^{3}-3 R^{2} x+x^{3}\right)
$$

The sphere is acted upon by two forces only: its weight and an upward force equal in magnitude to the weight of the liquid it has displaced. Show that

$$
4 R^{3} \rho_{\mathbf{s}}(g+\ddot{x})=\left(2 R^{3}-3 R^{2} x+x^{3}\right) \rho g .
$$

Given that the sphere is in equilibrium when $x=\frac{1}{2} R$, find $\rho_{\mathbf{s}}$ in terms of $\rho$. Find, in terms of $R$ and $g$, the period of small oscillations about this equilibrium position.

10 A uniform rod $A B$ has mass $M$ and length $2 a$. The point $P$ lies on the rod a distance $a-x$ from $A$. Show that the moment of inertia of the rod about an axis through $P$ and perpendicular to the rod is

$$
\frac{1}{3} M\left(a^{2}+3 x^{2}\right) .
$$

The rod is free to rotate, in a horizontal plane, about a fixed vertical axis through $P$. Initially the rod is at rest. The end $B$ is struck by a particle of mass $m$ moving horizontally with speed $u$ in a direction perpendicular to the rod. The coefficient of restitution between the rod and the particle is $e$. Show that the angular velocity of the rod immediately after impact is

$$
\frac{3 m u(1+e)(a+x)}{M\left(a^{2}+3 x^{2}\right)+3 m(a+x)^{2}} .
$$

In the case $m=2 M$, find the value of $x$ for which the angular velocity is greatest and show that this angular velocity is $u(1+e) / a$.

11 An equilateral triangle, comprising three light rods each of length $\sqrt{3} a$, has a particle of mass $m$ attached to each of its vertices. The triangle is suspended horizontally from a point vertically above its centre by three identical springs, so that the springs and rods form a tetrahedron. Each spring has natural length $a$ and modulus of elasticity $k m g$, and is light. Show that when the springs make an angle $\theta$ with the horizontal the tension in each spring is

$$
\frac{k m g(1-\cos \theta)}{\cos \theta} .
$$

Given that the triangle is in equilibrium when $\theta=\frac{1}{6} \pi$, show that $k=4 \sqrt{3}+6$.
The triangle is released from rest from the position at which $\theta=\frac{1}{3} \pi$. Show that when it passes through the equilibrium position its speed $V$ satisfies

$$
V^{2}=\frac{4 a g}{3}(6+\sqrt{3}) .
$$

## Section C: Probability and Statistics

12 A list consists only of letters $A$ and $B$ arranged in a row. In the list, there are $a$ letter $A$ s and $b$ letter $B \mathbf{s}$, where $a \geqslant 2$ and $b \geqslant 2$, and $a+b=n$. Each possible ordering of the letters is equally probable. The random variable $X_{1}$ is defined by

$$
X_{1}= \begin{cases}1 & \text { if the first letter in the row is } A \\ 0 & \text { otherwise }\end{cases}
$$

The random variables $X_{k}(2 \leqslant k \leqslant n)$ are defined by

$$
X_{k}= \begin{cases}1 & \text { if the }(k-1) \text { th letter is } B \text { and the } k \text { th is } A \\ 0 & \text { otherwise }\end{cases}
$$

The random variable $S$ is defined by $S=\sum_{i=1}^{n} X_{i}$.
(i) Find expressions for $\mathrm{E}\left(X_{i}\right)$, distinguishing between the cases $i=1$ and $i \neq 1$, and show that $\mathrm{E}(S)=\frac{a(b+1)}{n}$.
(ii) Show that:
(a) for $j \geqslant 3, \mathrm{E}\left(X_{1} X_{j}\right)=\frac{a(a-1) b}{n(n-1)(n-2)}$;
(b) $\sum_{i=2}^{n-2}\left(\sum_{j=i+2}^{n} \mathrm{E}\left(X_{i} X_{j}\right)\right)=\frac{a(a-1) b(b-1)}{2 n(n-1)}$;
(c) $\operatorname{Var}(S)=\frac{a(a-1) b(b+1)}{n^{2}(n-1)}$.

13 (i) The continuous random variable $X$ satisfies $0 \leqslant X \leqslant 1$, and has probability density function $\mathrm{f}(x)$ and cumulative distribution function $\mathrm{F}(x)$. The greatest value of $\mathrm{f}(x)$ is $M$, so that $0 \leqslant \mathrm{f}(x) \leqslant M$.
(a) Show that $0 \leqslant \mathrm{~F}(x) \leqslant M x$ for $0 \leqslant x \leqslant 1$.
(b) For any function $\mathrm{g}(x)$, show that

$$
\int_{0}^{1} 2 \mathrm{~g}(x) \mathrm{F}(x) \mathrm{f}(x) \mathrm{d} x=\mathrm{g}(1)-\int_{0}^{1} \mathrm{~g}^{\prime}(x)(\mathrm{F}(x))^{2} \mathrm{~d} x .
$$

(i) The continuous random variable $Y$ satisfies $0 \leqslant Y \leqslant 1$, and has probability density function $k \mathrm{~F}(y) \mathrm{f}(y)$, where f and F are as above.
(a) Determine the value of the constant $k$.
(b) Show that

$$
1+\frac{n M}{n+1} \mu_{n+1}-\frac{n M}{n+1} \leqslant \mathrm{E}\left(Y^{n}\right) \leqslant 2 M \mu_{n+1}
$$

where $\mu_{n+1}=\mathrm{E}\left(X^{n+1}\right)$ and $n \geqslant 0$.
(c) Hence show that, for $n \geqslant 1$,

$$
\mu_{n} \geqslant \frac{n}{(n+1) M}-\frac{n-1}{n+1} .
$$

