Section A: Pure Mathematics

1 In the triangle $A B C$, the base $A B$ is of length 1 unit and the angles at A and B are α and β respectively, where $0<\alpha \leqslant \beta$. The points P and Q lie on the sides $A C$ and $B C$ respectively, with $A P=P Q=Q B=x$. The line $P Q$ makes an angle of θ with the line through P parallel to $A B$.
(i) Show that $x \cos \theta=1-x \cos \alpha-x \cos \beta$, and obtain an expression for $x \sin \theta$ in terms of x, α and β. Hence show that

$$
\begin{equation*}
(1+2 \cos (\alpha+\beta)) x^{2}-2(\cos \alpha+\cos \beta) x+1=0 . \tag{*}
\end{equation*}
$$

Show that $(*)$ is also satisfied if P and Q lie on $A C$ produced and $B C$ produced, respectively. [By definition, P lies on $A C$ produced if P lies on the line through A and C and the points are in the order A, C, P.]
(ii) State the condition on α and β for $(*)$ to be linear in x. If this condition does not hold (but the condition $0<\alpha \leqslant \beta$ still holds), show that (*) has distinct real roots.
(iii) Find the possible values of x in the two cases (a) $\alpha=\beta=45^{\circ}$ and (b) $\alpha=30^{\circ}, \beta=90^{\circ}$, and illustrate each case with a sketch.

2 This question concerns the inequality

$$
\begin{equation*}
\int_{0}^{\pi}(\mathrm{f}(x))^{2} \mathrm{~d} x \leqslant \int_{0}^{\pi}\left(\mathrm{f}^{\prime}(x)\right)^{2} \mathrm{~d} x . \tag{*}
\end{equation*}
$$

(i) Show that $(*)$ is satisfied in the case $\mathrm{f}(x)=\sin n x$, where n is a positive integer.

Show by means of counterexamples that $(*)$ is not necessarily satisfied if either $\mathrm{f}(0) \neq 0$ or $\mathrm{f}(\pi) \neq 0$.
(ii) You may now assume that $(*)$ is satisfied for any (differentiable) function f for which $\mathrm{f}(0)=\mathrm{f}(\pi)=0$.

By setting $\mathrm{f}(x)=a x^{2}+b x+c$, where a, b and c are suitably chosen, show that $\pi^{2} \leqslant 10$.
By setting $\mathrm{f}(x)=p \sin \frac{1}{2} x+q \cos \frac{1}{2} x+r$, where p, q and r are suitably chosen, obtain another inequality for π.

Which of these inequalities leads to a better estimate for π^{2} ?

3 (i) Show, geometrically or otherwise, that the shortest distance between the origin and the line $y=m x+c$, where $c \geqslant 0$, is $c\left(m^{2}+1\right)^{-\frac{1}{2}}$.
(ii) The curve C lies in the $x-y$ plane. Let the line L be tangent to C at a point P on C, and let a be the shortest distance between the origin and L. The curve C has the property that the distance a is the same for all points P on C.

Let P be the point on C with coordinates $(x, y(x))$. Given that the tangent to C at P is not vertical, show that

$$
\begin{equation*}
\left(y-x y^{\prime}\right)^{2}=a^{2}\left(1+\left(y^{\prime}\right)^{2}\right) . \tag{*}
\end{equation*}
$$

By first differentiating (*) with respect to x, show that either $y=m x \pm a\left(1+m^{2}\right)^{\frac{1}{2}}$ for some m or $x^{2}+y^{2}=a^{2}$.
(iii) Now suppose that C (as defined above) is a continuous curve for $-\infty<x<\infty$, consisting of the arc of a circle and two straight lines. Sketch an example of such a curve which has a non-vertical tangent at each point.

4 (i) By using the substitution $u=1 / x$, show that for $b>0$

$$
\int_{1 / b}^{b} \frac{x \ln x}{\left(a^{2}+x^{2}\right)\left(a^{2} x^{2}+1\right)} \mathrm{d} x=0 .
$$

(ii) By using the substitution $u=1 / x$, show that for $b>0$,

$$
\int_{1 / b}^{b} \frac{\arctan x}{x} \mathrm{~d} x=\frac{\pi \ln b}{2} .
$$

(iii) By using the result $\int_{0}^{\infty} \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{\pi}{2 a}$ (where $a>0$), and a substitution of the form $u=k / x$, for suitable k, show that

$$
\int_{0}^{\infty} \frac{1}{\left(a^{2}+x^{2}\right)^{2}} \mathrm{~d} x=\frac{\pi}{4 a^{3}} \quad(a>0) .
$$

5 Given that $y=x u$, where u is a function of x, write down an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(i) Use the substitution $y=x u$ to solve

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y+x}{y-2 x}
$$

given that the solution curve passes through the point $(1,1)$.
Give your answer in the form of a quadratic in x and y.
(ii) Using the substitutions $x=X+a$ and $y=Y+b$ for appropriate values of a and b, or otherwise, solve

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-2 y-4}{2 x+y-3},
$$

given that the solution curve passes through the point $(1,1)$.

6 By simplifying $\sin \left(r+\frac{1}{2}\right) x-\sin \left(r-\frac{1}{2}\right) x$ or otherwise show that, for $\sin \frac{1}{2} x \neq 0$,

$$
\cos x+\cos 2 x+\cdots+\cos n x=\frac{\sin \left(n+\frac{1}{2}\right) x-\sin \frac{1}{2} x}{2 \sin \frac{1}{2} x} .
$$

The functions S_{n}, for $n=1,2, \ldots$, are defined by

$$
\mathrm{S}_{n}(x)=\sum_{r=1}^{n} \frac{1}{r} \sin r x \quad(0 \leqslant x \leqslant \pi) .
$$

(i) Find the stationary points of $\mathrm{S}_{2}(x)$ for $0 \leqslant x \leqslant \pi$, and sketch this function.
(ii) Show that if $\mathrm{S}_{n}(x)$ has a stationary point at $x=x_{0}$, where $0<x_{0}<\pi$, then

$$
\sin n x_{0}=\left(1-\cos n x_{0}\right) \tan \frac{1}{2} x_{0}
$$

and hence that $\mathrm{S}_{n}\left(x_{0}\right) \geqslant \mathrm{S}_{n-1}\left(x_{0}\right)$. Deduce that if $\mathrm{S}_{n-1}(x)>0$ for all x in the interval $0<x<\pi$, then $\mathrm{S}_{n}(x)>0$ for all x in this interval.
(iii) Prove that $\mathrm{S}_{n}(x) \geqslant 0$ for $n \geqslant 1$ and $0 \leqslant x \leqslant \pi$.

7 (i) The function f is defined by $\mathrm{f}(x)=|x-a|+|x-b|$, where $a<b$. Sketch the graph of $\mathrm{f}(x)$, giving the gradient in each of the regions $x<a, a<x<b$ and $x>b$. Sketch on the same diagram the graph of $\mathrm{g}(x)$, where $\mathrm{g}(x)=|2 x-a-b|$.

What shape is the quadrilateral with vertices $(a, 0),(b, 0),(b, \mathrm{f}(b))$ and $(a, \mathrm{f}(a))$?
(ii) Show graphically that the equation

$$
|x-a|+|x-b|=|x-c|,
$$

where $a<b$, has 0 , 1 or 2 solutions, stating the relationship of c to a and b in each case.
(iii) For the equation

$$
|x-a|+|x-b|=|x-c|+|x-d|,
$$

where $a<b, c<d$ and $d-c<b-a$, determine the number of solutions in the various cases that arise, stating the relationship between a, b, c and d in each case.

8 For positive integers n, a and b, the integer $c_{r}(0 \leqslant r \leqslant n)$ is defined to be the coefficient of x^{r} in the expansion in powers of x of $(a+b x)^{n}$. Write down an expression for c_{r} in terms of r, n, a and b.
For given n, a and b, let m denote a value of r for which c_{r} is greatest (that is, $c_{m} \geqslant c_{r}$ for $0 \leqslant r \leqslant n$).
Show that

$$
\frac{b(n+1)}{a+b}-1 \leqslant m \leqslant \frac{b(n+1)}{a+b} .
$$

Deduce that m is either a unique integer or one of two consecutive integers.
Let $\mathrm{G}(n, a, b)$ denote the unique value of m (if there is one) or the larger of the two possible values of m.
(i) Evaluate $\mathrm{G}(9,1,3)$ and $\mathrm{G}(9,2,3)$.
(ii) For any positive integer k, find $\mathrm{G}(2 k, a, a)$ and $\mathrm{G}(2 k-1, a, a)$ in terms of k.
(iii) For fixed n and b, determine a value of a for which $\mathrm{G}(n, a, b)$ is greatest.
(iv) For fixed n, find the greatest possible value of $\mathrm{G}(n, 1, b)$. For which values of b is this greatest value achieved?

Section B: Mechanics

9 A uniform rectangular lamina $A B C D$ rests in equilibrium in a vertical plane with the corner A in contact with a rough vertical wall. The plane of the lamina is perpendicular to the wall. It is supported by a light inextensible string attached to the side $A B$ at a distance d from A. The other end of the string is attached to a point on the wall above A where it makes an acute angle θ with the downwards vertical. The side $A B$ makes an acute angle ϕ with the upwards vertical at A. The sides $B C$ and $A B$ have lengths $2 a$ and $2 b$ respectively. The coefficient of friction between the lamina and the wall is μ.
(i) Show that, when the lamina is in limiting equilibrium with the frictional force acting upwards,

$$
\begin{equation*}
d \sin (\theta+\phi)=(\cos \theta+\mu \sin \theta)(a \cos \phi+b \sin \phi) . \tag{*}
\end{equation*}
$$

(ii) How should (*) be modified if the lamina is in limiting equilibrium with the frictional force acting downwards?
(iii) Find a condition on d, in terms of $a, b, \tan \theta$ and $\tan \phi$, which is necessary and sufficient for the frictional force to act upwards. Show that this condition cannot be satisfied if $b(2 \tan \theta+\tan \phi)<a$.

10 A particle is projected from a point O on horizontal ground with initial speed u and at an angle of θ above the ground. The motion takes place in the $x-y$ plane, where the x-axis is horizontal, the y-axis is vertical and the origin is O. Obtain the Cartesian equation of the particle's trajectory in terms of u, g and λ, where $\lambda=\tan \theta$.
Now consider the trajectories for different values of θ with u fixed. Show that for a given value of x, the coordinate y can take all values up to a maximum value, Y, which you should determine as a function of x, u and g.
Sketch a graph of Y against x and indicate on your graph the set of points that can be reached by a particle projected from O with speed u.
Hence find the furthest distance from O that can be achieved by such a projectile.

11 A small smooth ring R of mass m is free to slide on a fixed smooth horizontal rail. A light inextensible string of length L is attached to one end, O, of the rail. The string passes through the ring, and a particle P of mass $k m$ (where $k>0$) is attached to its other end; this part of the string hangs at an acute angle α to the vertical and it is given that α is constant in the motion.
Let x be the distance between O and the ring. Taking the y-axis to be vertically upwards, write down the Cartesian coordinates of P relative to O in terms of x, L and α.
(i) By considering the vertical component of the equation of motion of P, show that

$$
k m \ddot{x} \cos \alpha=T \cos \alpha-k m g,
$$

where T is the tension in the string. Obtain two similar equations relating to the horizontal components of the equations of motion of P and R.
(ii) Show that $\frac{\sin \alpha}{(1-\sin \alpha)^{2}}=k$, and deduce, by means of a sketch or otherwise, that motion with α constant is possible for all values of k.
(iii) Show that $\ddot{x}=-g \tan \alpha$.

Section C: Probability and Statistics

12 The lifetime of a fly (measured in hours) is given by the continuous random variable T with probability density function $\mathrm{f}(t)$ and cumulative distribution function $\mathrm{F}(t)$. The hazard function, $\mathrm{h}(t)$, is defined, for $\mathrm{F}(t)<1$, by

$$
\mathrm{h}(t)=\frac{\mathrm{f}(t)}{1-\mathrm{F}(t)} .
$$

(i) Given that the fly lives to at least time t, show that the probability of its dying within the following δt is approximately $\mathrm{h}(t) \delta t$ for small values of δt.
(ii) Find the hazard function in the case $\mathrm{F}(t)=t / a$ for $0<t<a$. Sketch $\mathrm{f}(t)$ and $\mathrm{h}(t)$ in this case.
(iii) The random variable T is distributed on the interval $t>a$, where $a>0$, and its hazard function is t^{-1}. Determine the probability density function for T.
(iv) Show that $\mathrm{h}(t)$ is constant for $t>b$ and zero otherwise if and only if $\mathrm{f}(t)=k \mathrm{e}^{-k(t-b)}$ for $t>b$, where k is a positive constant.
(v) The random variable T is distributed on the interval $t>0$ and its hazard function is given by

$$
\mathrm{h}(t)=\left(\frac{\lambda}{\theta^{\lambda}}\right) t^{\lambda-1}
$$

where λ and θ are positive constants. Find the probability density function for T.

13 A random number generator prints out a sequence of integers $I_{1}, I_{2}, I_{3}, \ldots$. Each integer is independently equally likely to be any one of $1,2, \ldots, n$, where n is fixed. The random variable X takes the value r, where I_{r} is the first integer which is a repeat of some earlier integer.
Write down an expression for $\mathrm{P}(X=4)$.
(i) Find an expression for $\mathrm{P}(X=r)$, where $2 \leqslant r \leqslant n+1$. Hence show that, for any positive integer n,

$$
\frac{1}{n}+\left(1-\frac{1}{n}\right) \frac{2}{n}+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \frac{3}{n}+\cdots=1
$$

(ii) Write down an expression for $\mathrm{E}(X)$. (You do not need to simplify it.)
(iii) Write down an expression for $\mathrm{P}(X \geqslant k)$.
(iv) Show that, for any discrete random variable Y taking the values $1,2, \ldots, N$,

$$
\mathrm{E}(Y)=\sum_{k=1}^{N} \mathrm{P}(Y \geqslant k) .
$$

Hence show that, for any positive integer n,

$$
\left(1-\frac{1^{2}}{n}\right)+\left(1-\frac{1}{n}\right)\left(1-\frac{2^{2}}{n}\right)+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3^{2}}{n}\right)+\cdots=0 .
$$

