Section A: Pure Mathematics

- 1 In the triangle ABC, the base AB is of length 1 unit and the angles at A and B are α and β respectively, where $0 < \alpha \leq \beta$. The points P and Q lie on the sides AC and BC respectively, with AP = PQ = QB = x. The line PQ makes an angle of θ with the line through P parallel to AB.
 - (i) Show that $x \cos \theta = 1 x \cos \alpha x \cos \beta$, and obtain an expression for $x \sin \theta$ in terms of x, α and β . Hence show that

$$(1 + 2\cos(\alpha + \beta))x^2 - 2(\cos\alpha + \cos\beta)x + 1 = 0.$$
 (*)

Show that (*) is also satisfied if P and Q lie on AC produced and BC produced, respectively. [By definition, P lies on AC produced if P lies on the line through A and C and the points are in the order A, C, P.]

- (ii) State the condition on α and β for (*) to be linear in x. If this condition does not hold (but the condition $0 < \alpha \leq \beta$ still holds), show that (*) has distinct real roots.
- (iii) Find the possible values of x in the two cases (a) $\alpha = \beta = 45^{\circ}$ and (b) $\alpha = 30^{\circ}$, $\beta = 90^{\circ}$, and illustrate each case with a sketch.
- 2 This question concerns the inequality

$$\int_0^{\pi} (f(x))^2 dx \le \int_0^{\pi} (f'(x))^2 dx.$$
 (*)

(i) Show that (*) is satisfied in the case $f(x) = \sin nx$, where *n* is a positive integer.

Show by means of counterexamples that (*) is not necessarily satisfied if either $f(0) \neq 0$ or $f(\pi) \neq 0$.

(ii) You may now assume that (*) is satisfied for any (differentiable) function f for which $f(0) = f(\pi) = 0$.

By setting $f(x) = ax^2 + bx + c$, where a, b and c are suitably chosen, show that $\pi^2 \le 10$. By setting $f(x) = p \sin \frac{1}{2}x + q \cos \frac{1}{2}x + r$, where p, q and r are suitably chosen, obtain another inequality for π .

Which of these inequalities leads to a better estimate for π^2 ?

- 3 (i) Show, geometrically or otherwise, that the shortest distance between the origin and the line y = mx + c, where $c \ge 0$, is $c(m^2 + 1)^{-\frac{1}{2}}$.
 - (ii) The curve *C* lies in the *x*-*y* plane. Let the line *L* be tangent to *C* at a point *P* on *C*, and let *a* be the shortest distance between the origin and *L*. The curve *C* has the property that the distance *a* is the same for all points *P* on *C*.

Let *P* be the point on *C* with coordinates (x, y(x)). Given that the tangent to *C* at *P* is not vertical, show that

$$(y - xy')^2 = a^2 (1 + (y')^2).$$
(*)

By first differentiating (*) with respect to x, show that either $y = mx \pm a(1 + m^2)^{\frac{1}{2}}$ for some m or $x^2 + y^2 = a^2$.

- (iii) Now suppose that *C* (as defined above) is a continuous curve for $-\infty < x < \infty$, consisting of the arc of a circle and two straight lines. Sketch an example of such a curve which has a non-vertical tangent at each point.
- 4 (i) By using the substitution u = 1/x, show that for b > 0

$$\int_{1/b}^{b} \frac{x \ln x}{(a^2 + x^2)(a^2 x^2 + 1)} \, \mathrm{d}x = 0 \,.$$

(ii) By using the substitution u = 1/x, show that for b > 0,

$$\int_{1/b}^{b} \frac{\arctan x}{x} \, \mathrm{d}x = \frac{\pi \ln b}{2} \,.$$

(iii) By using the result $\int_0^\infty \frac{1}{a^2 + x^2} dx = \frac{\pi}{2a}$ (where a > 0), and a substitution of the form u = k/x, for suitable k, show that

$$\int_0^\infty \frac{1}{(a^2 + x^2)^2} \, \mathrm{d}x = \frac{\pi}{4a^3} \qquad (a > 0).$$

- **5** Given that y = xu, where u is a function of x, write down an expression for $\frac{dy}{dx}$.
 - (i) Use the substitution y = xu to solve

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2y+x}{y-2x}$$

given that the solution curve passes through the point (1, 1).

Give your answer in the form of a quadratic in x and y.

(ii) Using the substitutions x = X + a and y = Y + b for appropriate values of a and b, or otherwise, solve

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x - 2y - 4}{2x + y - 3},$$

given that the solution curve passes through the point (1,1).

6 By simplifying $\sin(r+\frac{1}{2})x - \sin(r-\frac{1}{2})x$ or otherwise show that, for $\sin\frac{1}{2}x \neq 0$,

$$\cos x + \cos 2x + \dots + \cos nx = \frac{\sin(n + \frac{1}{2})x - \sin\frac{1}{2}x}{2\sin\frac{1}{2}x}.$$

The functions S_n , for n = 1, 2, ..., are defined by

$$S_n(x) = \sum_{r=1}^n \frac{1}{r} \sin rx \qquad (0 \le x \le \pi).$$

- (i) Find the stationary points of $S_2(x)$ for $0 \le x \le \pi$, and sketch this function.
- (ii) Show that if $S_n(x)$ has a stationary point at $x = x_0$, where $0 < x_0 < \pi$, then

$$\sin nx_0 = (1 - \cos nx_0) \tan \frac{1}{2}x_0$$

and hence that $S_n(x_0) \ge S_{n-1}(x_0)$. Deduce that if $S_{n-1}(x) > 0$ for all x in the interval $0 < x < \pi$, then $S_n(x) > 0$ for all x in this interval.

(iii) Prove that $S_n(x) \ge 0$ for $n \ge 1$ and $0 \le x \le \pi$.

7 (i) The function f is defined by f(x) = |x - a| + |x - b|, where a < b. Sketch the graph of f(x), giving the gradient in each of the regions x < a, a < x < b and x > b. Sketch on the same diagram the graph of g(x), where g(x) = |2x - a - b|.

What shape is the quadrilateral with vertices (a, 0), (b, 0), (b, f(b)) and (a, f(a))?

(ii) Show graphically that the equation

$$|x-a| + |x-b| = |x-c|,$$

where a < b, has 0, 1 or 2 solutions, stating the relationship of c to a and b in each case.

(iii) For the equation

$$|x-a| + |x-b| = |x-c| + |x-d|,$$

where a < b, c < d and d - c < b - a, determine the number of solutions in the various cases that arise, stating the relationship between a, b, c and d in each case.

8 For positive integers n, a and b, the integer c_r ($0 \le r \le n$) is defined to be the coefficient of x^r in the expansion in powers of x of $(a + bx)^n$. Write down an expression for c_r in terms of r, n, a and b.

For given n, a and b, let m denote a value of r for which c_r is greatest (that is, $c_m \ge c_r$ for $0 \le r \le n$).

Show that

$$\frac{b(n+1)}{a+b} - 1 \leqslant m \leqslant \frac{b(n+1)}{a+b}$$

Deduce that m is either a unique integer or one of two consecutive integers.

Let G(n, a, b) denote the unique value of m (if there is one) or the larger of the two possible values of m.

- (i) Evaluate G(9, 1, 3) and G(9, 2, 3).
- (ii) For any positive integer k, find G(2k, a, a) and G(2k 1, a, a) in terms of k.
- (iii) For fixed *n* and *b*, determine a value of *a* for which G(n, a, b) is greatest.
- (iv) For fixed n, find the greatest possible value of G(n, 1, b). For which values of b is this greatest value achieved?

Section B: Mechanics

- **9** A uniform rectangular lamina *ABCD* rests in equilibrium in a vertical plane with the corner *A* in contact with a rough vertical wall. The plane of the lamina is perpendicular to the wall. It is supported by a light inextensible string attached to the side *AB* at a distance *d* from *A*. The other end of the string is attached to a point on the wall above *A* where it makes an acute angle θ with the downwards vertical. The side *AB* makes an acute angle ϕ with the upwards vertical at *A*. The sides *BC* and *AB* have lengths 2a and 2b respectively. The coefficient of friction between the lamina and the wall is μ .
 - (i) Show that, when the lamina is in limiting equilibrium with the frictional force acting upwards,

$$d\sin(\theta + \phi) = (\cos\theta + \mu\sin\theta)(a\cos\phi + b\sin\phi). \tag{(*)}$$

- (ii) How should (*) be modified if the lamina is in limiting equilibrium with the frictional force acting downwards?
- (iii) Find a condition on *d*, in terms of *a*, *b*, $\tan \theta$ and $\tan \phi$, which is necessary and sufficient for the frictional force to act upwards. Show that this condition cannot be satisfied if $b(2 \tan \theta + \tan \phi) < a$.
- **10** A particle is projected from a point *O* on horizontal ground with initial speed *u* and at an angle of θ above the ground. The motion takes place in the *x*-*y* plane, where the *x*-axis is horizontal, the *y*-axis is vertical and the origin is *O*. Obtain the Cartesian equation of the particle's trajectory in terms of *u*, *g* and λ , where $\lambda = \tan \theta$.

Now consider the trajectories for different values of θ with u fixed. Show that for a given value of x, the coordinate y can take all values up to a maximum value, Y, which you should determine as a function of x, u and g.

Sketch a graph of Y against x and indicate on your graph the set of points that can be reached by a particle projected from O with speed u.

Hence find the furthest distance from *O* that can be achieved by such a projectile.

11 A small smooth ring *R* of mass *m* is free to slide on a fixed smooth horizontal rail. A light inextensible string of length *L* is attached to one end, *O*, of the rail. The string passes through the ring, and a particle *P* of mass km (where k > 0) is attached to its other end; this part of the string hangs at an acute angle α to the vertical and it is given that α is constant in the motion.

Let x be the distance between O and the ring. Taking the y-axis to be vertically upwards, write down the Cartesian coordinates of P relative to O in terms of x, L and α .

(i) By considering the vertical component of the equation of motion of *P*, show that

$$km\ddot{x}\cos\alpha = T\cos\alpha - kmg\,,$$

where T is the tension in the string. Obtain two similar equations relating to the horizontal components of the equations of motion of P and R.

- (ii) Show that $\frac{\sin \alpha}{(1-\sin \alpha)^2} = k$, and deduce, by means of a sketch or otherwise, that motion with α constant is possible for all values of k.
- (iii) Show that $\ddot{x} = -g \tan \alpha$.

Section C: Probability and Statistics

12 The lifetime of a fly (measured in hours) is given by the continuous random variable T with probability density function f(t) and cumulative distribution function F(t). The *hazard function*, h(t), is defined, for F(t) < 1, by

$$\mathbf{h}(t) = \frac{\mathbf{f}(t)}{1 - \mathbf{F}(t)} \,.$$

- (i) Given that the fly lives to at least time t, show that the probability of its dying within the following δt is approximately $h(t) \delta t$ for small values of δt .
- (ii) Find the hazard function in the case F(t) = t/a for 0 < t < a. Sketch f(t) and h(t) in this case.
- (iii) The random variable T is distributed on the interval t > a, where a > 0, and its hazard function is t^{-1} . Determine the probability density function for T.
- (iv) Show that h(t) is constant for t > b and zero otherwise if and only if $f(t) = ke^{-k(t-b)}$ for t > b, where k is a positive constant.
- (v) The random variable T is distributed on the interval t > 0 and its hazard function is given by

$$\mathbf{h}(t) = \left(\frac{\lambda}{\theta^{\lambda}}\right) t^{\lambda - 1} \,,$$

where λ and θ are positive constants. Find the probability density function for T.

13 A random number generator prints out a sequence of integers I_1, I_2, I_3, \ldots Each integer is independently equally likely to be any one of $1, 2, \ldots, n$, where n is fixed. The random variable X takes the value r, where I_r is the first integer which is a repeat of some earlier integer.

Write down an expression for P(X = 4).

(i) Find an expression for P(X = r), where $2 \le r \le n + 1$. Hence show that, for any positive integer n,

$$\frac{1}{n} + \left(1 - \frac{1}{n}\right)\frac{2}{n} + \left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\frac{3}{n} + \dots = 1.$$

- (ii) Write down an expression for E(X). (You do not need to simplify it.)
- (iii) Write down an expression for $P(X \ge k)$.
- (iv) Show that, for any discrete random variable Y taking the values 1, 2, ..., N,

$$\mathcal{E}(Y) = \sum_{k=1}^{N} \mathcal{P}(Y \ge k) \,.$$

Hence show that, for any positive integer n,

$$\left(1-\frac{1^2}{n}\right) + \left(1-\frac{1}{n}\right)\left(1-\frac{2^2}{n}\right) + \left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3^2}{n}\right) + \dots = 0.$$