Section A: Pure Mathematics

1 Let a, b and c be real numbers such that $a+b+c=0$ and let

$$
(1+a x)(1+b x)(1+c x)=1+q x^{2}+r x^{3}
$$

for all real x. Show that $q=b c+c a+a b$ and $r=a b c$.
(i) Show that the coefficient of x^{n} in the series expansion (in ascending powers of x) of $\ln \left(1+q x^{2}+r x^{3}\right)$ is $(-1)^{n+1} S_{n}$ where

$$
S_{n}=\frac{a^{n}+b^{n}+c^{n}}{n}, \quad(n \geqslant 1) .
$$

(ii) Find, in terms of q and r, the coefficients of x^{2}, x^{3} and x^{5} in the series expansion (in ascending powers of x) of $\ln \left(1+q x^{2}+r x^{3}\right)$ and hence show that $S_{2} S_{3}=S_{5}$.
(iii) Show that $S_{2} S_{5}=S_{7}$.
(iv) Give a proof of, or find a counterexample to, the claim that $S_{2} S_{7}=S_{9}$.

2 (i) Show, by means of the substitution $u=\cosh x$, that

$$
\int \frac{\sinh x}{\cosh 2 x} \mathrm{~d} x=\frac{1}{2 \sqrt{2}} \ln \left|\frac{\sqrt{2} \cosh x-1}{\sqrt{2} \cosh x+1}\right|+C .
$$

(ii) Use a similar substitution to find an expression for

$$
\int \frac{\cosh x}{\cosh 2 x} \mathrm{~d} x
$$

(iii) Using parts (i) and (ii) above, show that

$$
\int_{0}^{1} \frac{1}{1+u^{4}} \mathrm{~d} u=\frac{\pi+2 \ln (\sqrt{2}+1)}{4 \sqrt{2}} .
$$

3 (i) The line L has equation $y=m x+c$, where $m>0$ and $c>0$. Show that, in the case $m c>a>0$, the shortest distance between L and the parabola $y^{2}=4 a x$ is

$$
\frac{m c-a}{m \sqrt{m^{2}+1}}
$$

What is the shortest distance in the case that $m c \leqslant a$?
(ii) Find the shortest distance between the point $(p, 0)$, where $p>0$, and the parabola $y^{2}=4 a x$, where $a>0$, in the different cases that arise according to the value of p / a. [You may wish to use the parametric coordinates ($a t^{2}, 2 a t$) of points on the parabola.]
Hence find the shortest distance between the circle $(x-p)^{2}+y^{2}=b^{2}$, where $p>0$ and $b>0$, and the parabola $y^{2}=4 a x$, where $a>0$, in the different cases that arise according to the values of p, a and b.

4 (i) Let

$$
I=\int_{0}^{1}\left(\left(y^{\prime}\right)^{2}-y^{2}\right) \mathrm{d} x \quad \text { and } \quad I_{1}=\int_{0}^{1}\left(y^{\prime}+y \tan x\right)^{2} \mathrm{~d} x
$$

where y is a given function of x satisfying $y=0$ at $x=1$. Show that $I-I_{1}=0$ and deduce that $I \geqslant 0$. Show further that $I=0$ only if $y=0$ for all $x(0 \leqslant x \leqslant 1)$.
(ii) Let

$$
J=\int_{0}^{1}\left(\left(y^{\prime}\right)^{2}-a^{2} y^{2}\right) \mathrm{d} x
$$

where a is a given positive constant and y is a given function of x, not identically zero, satisfying $y=0$ at $x=1$. By considering an integral of the form

$$
\int_{0}^{1}\left(y^{\prime}+a y \tan b x\right)^{2} \mathrm{~d} x
$$

where b is suitably chosen, show that $J \geqslant 0$. You should state the range of values of a, in the form $a<k$, for which your proof is valid.

In the case $a=k$, find a function y (not everywhere zero) such that $J=0$.

5 A quadrilateral drawn in the complex plane has vertices A, B, C and D, labelled anticlockwise. These vertices are represented, respectively, by the complex numbers a, b, c and d. Show that $A B C D$ is a parallelogram (defined as a quadrilateral in which opposite sides are parallel and equal in length) if and only if $a+c=b+d$. Show further that, in this case, $A B C D$ is a square if and only if $\mathrm{i}(a-c)=b-d$.
Let $P Q R S$ be a quadrilateral in the complex plane, with vertices labelled anticlockwise, the internal angles of which are all less than 180°. Squares with centres X, Y, Z and T are constructed externally to the quadrilateral on the sides $P Q, Q R, R S$ and $S P$, respectively.
(i) If P and Q are represented by the complex numbers p and q, respectively, show that X can be represented by

$$
\frac{1}{2}(p(1+\mathrm{i})+q(1-\mathrm{i})) .
$$

(ii) Show that $X Y Z T$ is a square if and only if $P Q R S$ is a parallelogram.

6 Starting from the result that

$$
\mathrm{h}(t)>0 \text { for } 0<t<x \Longrightarrow \int_{0}^{x} \mathrm{~h}(t) \mathrm{d} t>0,
$$

show that, if $\mathrm{f}^{\prime \prime}(t)>0$ for $0<t<x_{0}$ and $\mathrm{f}(0)=\mathrm{f}^{\prime}(0)=0$, then $\mathrm{f}(t)>0$ for $0<t<x_{0}$.
(i) Show that, for $0<x<\frac{1}{2} \pi$,

$$
\cos x \cosh x<1 .
$$

(ii) Show that, for $0<x<\frac{1}{2} \pi$,

$$
\frac{1}{\cosh x}<\frac{\sin x}{x}<\frac{x}{\sinh x} .
$$

7 The four distinct points $P_{i}(i=1,2,3,4)$ are the vertices, labelled anticlockwise, of a cyclic quadrilateral. The lines $P_{1} P_{3}$ and $P_{2} P_{4}$ intersect at Q.
(i) By considering the triangles $P_{1} Q P_{4}$ and $P_{2} Q P_{3}$ show that $\left(P_{1} Q\right)\left(Q P_{3}\right)=\left(P_{2} Q\right)\left(Q P_{4}\right)$.
(ii) Let \mathbf{p}_{i} be the position vector of the point $P_{i}(i=1,2,3,4)$. Show that there exist numbers a_{i}, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i}=0 \quad \text { and } \quad \sum_{i=1}^{4} a_{i} \mathbf{p}_{i}=\mathbf{0} \tag{*}
\end{equation*}
$$

(iii) Let $a_{i}(i=1,2,3,4)$ be any numbers, not all zero, that satisfy ($*$). Show that $a_{1}+a_{3} \neq 0$ and that the lines $P_{1} P_{3}$ and $P_{2} P_{4}$ intersect at the point with position vector

$$
\frac{a_{1} \mathbf{p}_{1}+a_{3} \mathbf{p}_{3}}{a_{1}+a_{3}} .
$$

Deduce that $a_{1} a_{3}\left(P_{1} P_{3}\right)^{2}=a_{2} a_{4}\left(P_{2} P_{4}\right)^{2}$.

8 The numbers $\mathrm{f}(r)$ satisfy $\mathrm{f}(r)>\mathrm{f}(r+1)$ for $r=1,2, \ldots$. Show that, for any non-negative integer n,

$$
k^{n}(k-1) \mathrm{f}\left(k^{n+1}\right) \leqslant \sum_{r=k^{n}}^{k^{n+1}-1} \mathrm{f}(r) \leqslant k^{n}(k-1) \mathrm{f}\left(k^{n}\right)
$$

where k is an integer greater than 1.
(i) By taking $\mathrm{f}(r)=1 / r$, show that

$$
\frac{N+1}{2} \leqslant \sum_{r=1}^{2^{N+1}-1} \frac{1}{r} \leqslant N+1 .
$$

Deduce that the sum $\sum_{r=1}^{\infty} \frac{1}{r}$ does not converge.
(ii) By taking $\mathrm{f}(r)=1 / r^{3}$, show that

$$
\sum_{r=1}^{\infty} \frac{1}{r^{3}} \leqslant 1 \frac{1}{3} .
$$

(iii) Let $S(n)$ be the set of positive integers less than n which do not have a 2 in their decimal representation and let $\sigma(n)$ be the sum of the reciprocals of the numbers in $S(n)$, so for example $\sigma(5)=1+\frac{1}{3}+\frac{1}{4}$. Show that $S(1000)$ contains $9^{3}-1$ distinct numbers.
Show that $\sigma(n)<80$ for all n.

Section B: Mechanics

9 A particle of mass m is projected with velocity \mathbf{u}. It is acted upon by the force $m \mathbf{g}$ due to gravity and by a resistive force $-m k \mathbf{v}$, where \mathbf{v} is its velocity and k is a positive constant.
Given that, at time t after projection, its position \mathbf{r} relative to the point of projection is given by

$$
\mathbf{r}=\frac{k t-1+\mathrm{e}^{-k t}}{k^{2}} \mathbf{g}+\frac{1-\mathrm{e}^{-k t}}{k} \mathbf{u}
$$

find an expression for \mathbf{v} in terms of k, t, \mathbf{g} and \mathbf{u}. Verify that the equation of motion and the initial conditions are satisfied.

Let $\mathbf{u}=u \cos \alpha \mathbf{i}+u \sin \alpha \mathbf{j}$ and $\mathbf{g}=-g \mathbf{j}$, where $0<\alpha<90^{\circ}$, and let T be the time after projection at which $\mathbf{r} . \mathbf{j}=0$. Show that

$$
u k \sin \alpha=\left(\frac{k T}{1-\mathrm{e}^{-k T}}-1\right) g .
$$

Let β be the acute angle between \mathbf{v} and \mathbf{i} at time T. Show that

$$
\tan \beta=\frac{\left(\mathrm{e}^{k T}-1\right) g}{u k \cos \alpha}-\tan \alpha .
$$

Show further that $\tan \beta>\tan \alpha$ (you may assume that $\sinh k T>k T$) and deduce that $\beta>\alpha$.

10 Two particles X and Y, of equal mass m, lie on a smooth horizontal table and are connected by a light elastic spring of natural length a and modulus of elasticity λ. Two more springs, identical to the first, connect X to a point P on the table and Y to a point Q on the table. The distance between P and Q is $3 a$.
Initially, the particles are held so that $X P=a, Y Q=\frac{1}{2} a$, and $P X Y Q$ is a straight line. The particles are then released.
At time t, the particle X is a distance $a+x$ from P and the particle Y is a distance $a+y$ from Q. Show that

$$
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{\lambda}{a}(2 x+y)
$$

and find a similar expression involving $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$. Deduce that

$$
x-y=A \cos \omega t+B \sin \omega t
$$

where A and B are constants to be determined and $m a \omega^{2}=\lambda$. Find a similar expression for $x+y$.
Show that Y will never return to its initial position.

11 A particle P of mass m is connected by two light inextensible strings to two fixed points A and B, with A vertically above B. The string $A P$ has length x. The particle is rotating about the vertical through A and B with angular velocity ω, and both strings are taut. Angles $P A B$ and $P B A$ are α and β, respectively.
Find the tensions T_{A} and T_{B} in the strings $A P$ and $B P$ (respectively), and hence show that $\omega^{2} x \cos \alpha \geqslant g$.

Consider now the case that $\omega^{2} x \cos \alpha=g$. Given that $A B=h$ and $B P=d$, where $h>d$, show that $h \cos \alpha \geqslant \sqrt{h^{2}-d^{2}}$. Show further that

$$
m g<T_{A} \leqslant \frac{m g h}{\sqrt{h^{2}-d^{2}}}
$$

Describe the geometry of the strings when T_{A} attains its upper bound.

Section C: Probability and Statistics

12 The random variable X has probability density function $\mathrm{f}(x)$ (which you may assume is differentiable) and cumulative distribution function $\mathrm{F}(x)$ where $-\infty<x<\infty$. The random variable Y is defined by $Y=\mathrm{e}^{X}$. You may assume throughout this question that X and Y have unique modes.
(i) Find the median value y_{m} of Y in terms of the median value x_{m} of X.
(ii) Show that the probability density function of Y is $\mathrm{f}(\ln y) / y$, and deduce that the mode λ of Y satisfies $\mathrm{f}^{\prime}(\ln \lambda)=\mathrm{f}(\ln \lambda)$.
(iii) Suppose now that $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, so that

$$
\mathrm{f}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} .
$$

Explain why

$$
\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(x-\mu-\sigma^{2}\right)^{2} /\left(2 \sigma^{2}\right)} \mathrm{d} x=1
$$

and hence show that $\mathrm{E}(Y)=\mathrm{e}^{\mu+\frac{1}{2} \sigma^{2}}$.
(iv) Show that, when $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$,

$$
\lambda<y_{m}<\mathrm{E}(Y) .
$$

13 I play a game which has repeated rounds. Before the first round, my score is 0 . Each round can have three outcomes:

1. my score is unchanged and the game ends;
2. my score is unchanged and I continue to the next round;
3. my score is increased by one and I continue to the next round.

The probabilities of these outcomes are a, b and c, respectively (the same in each round), where $a+b+c=1$ and $a b c \neq 0$. The random variable N represents my score at the end of a randomly chosen game.
Let $\mathrm{G}(t)$ be the probability generating function of N.
(i) Suppose in the first round, the game ends. Show that the probability generating function conditional on this happening is 1 .
(ii) Suppose in the first round, the game continues to the next round with no change in score. Show that the probability generating function conditional on this happening is $\mathrm{G}(t)$.
(iii) By comparing the coefficients of t^{n}, show that $\mathrm{G}(t)=a+b \mathrm{G}(t)+c t \mathrm{G}(t)$. Deduce that, for $n \geqslant 0$,

$$
P(N=n)=\frac{a c^{n}}{(1-b)^{n+1}} .
$$

(iv) Show further that, for $n \geqslant 0$,

$$
P(N=n)=\frac{\mu^{n}}{(1+\mu)^{n+1}},
$$

where $\mu=\mathrm{E}(N)$.

