Section A: Pure Mathematics

1 (i) By use of calculus, show that $x-\ln (1+x)$ is positive for all positive x. Use this result to show that

$$
\sum_{k=1}^{n} \frac{1}{k}>\ln (n+1)
$$

(ii) By considering $x+\ln (1-x)$, show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}<1+\ln 2 .
$$

2 In the triangle $A B C$, angle $B A C=\alpha$ and angle $C B A=2 \alpha$, where 2α is acute, and $B C=x$. Show that $A B=\left(3-4 \sin ^{2} \alpha\right) x$.
The point D is the midpoint of $A B$ and the point E is the foot of the perpendicular from C to $A B$. Find an expression for $D E$ in terms of x.
The point F lies on the perpendicular bisector of $A B$ and is a distance x from C. The points F and B lie on the same side of the line through A and C. Show that the line $F C$ trisects the angle $A C B$.

3 Three rods have lengths a, b and c, where $a<b<c$. The three rods can be made into a triangle (possibly of zero area) if $a+b \geqslant c$.
Let T_{n} be the number of triangles that can be made with three rods chosen from n rods of lengths $1,2,3, \ldots, n$ (where $n \geqslant 3$). Show that $T_{8}-T_{7}=2+4+6$ and evaluate $T_{8}-T_{6}$. Write down expressions for $T_{2 m}-T_{2 m-1}$ and $T_{2 m}-T_{2 m-2}$.
Prove by induction that $T_{2 m}=\frac{1}{6} m(m-1)(4 m+1)$, and find the corresponding result for an odd number of rods.

4 (i) The continuous function f is defined by

$$
\tan \mathrm{f}(x)=x \quad(-\infty<x<\infty)
$$

and $\mathrm{f}(0)=\pi$. Sketch the curve $y=\mathrm{f}(x)$.
(ii) The continuous function g is defined by

$$
\tan \mathrm{g}(x)=\frac{x}{1+x^{2}} \quad(-\infty<x<\infty)
$$

and $\mathrm{g}(0)=\pi$. Sketch the curves $y=\frac{x}{1+x^{2}}$ and $y=\mathrm{g}(x)$.
(iii) The continuous function h is defined by $\mathrm{h}(0)=\pi$ and

$$
\tan \mathrm{h}(x)=\frac{x}{1-x^{2}} \quad(x \neq \pm 1) .
$$

(The values of $\mathrm{h}(x)$ at $x= \pm 1$ are such that $\mathrm{h}(x)$ is continuous at these points.)
Sketch the curves $y=\frac{x}{1-x^{2}}$ and $y=\mathrm{h}(x)$.

5 In this question, the \arctan function satisfies $0 \leqslant \arctan x<\frac{1}{2} \pi$ for $x \geqslant 0$.
(i) Let

$$
S_{n}=\sum_{m=1}^{n} \arctan \left(\frac{1}{2 m^{2}}\right),
$$

for $n=1,2,3, \ldots$. Prove by induction that

$$
\tan S_{n}=\frac{n}{n+1}
$$

Prove also that

$$
S_{n}=\arctan \frac{n}{n+1} .
$$

(ii) In a triangle $A B C$, the lengths of the sides $A B$ and $B C$ are $4 n^{2}$ and $4 n^{4}-1$, respectively, and the angle at B is a right angle. Let $\angle B C A=2 \alpha_{n}$. Show that

$$
\sum_{n=1}^{\infty} \alpha_{n}=\frac{1}{4} \pi .
$$

6 (i) Show that

$$
\sec ^{2}\left(\frac{1}{4} \pi-\frac{1}{2} x\right)=\frac{2}{1+\sin x}
$$

Hence integrate $\frac{1}{1+\sin x}$ with respect to x.
(ii) By means of the substitution $y=\pi-x$, show that

$$
\int_{0}^{\pi} x \mathrm{f}(\sin x) \mathrm{d} x=\frac{\pi}{2} \int_{0}^{\pi} \mathrm{f}(\sin x) \mathrm{d} x
$$

where f is any function for which these integrals exist.
Hence evaluate

$$
\int_{0}^{\pi} \frac{x}{1+\sin x} \mathrm{~d} x
$$

(iii) Evaluate

$$
\int_{0}^{\pi} \frac{2 x^{3}-3 \pi x^{2}}{(1+\sin x)^{2}} \mathrm{~d} x .
$$

7 A circle C is said to be bisected by a curve X if X meets C in exactly two points and these points are diametrically opposite each other on C.
(i) Let C be the circle of radius a in the $x-y$ plane with centre at the origin.

Show, by giving its equation, that it is possible to find a circle of given radius r that bisects C provided $r>a$. Show that no circle of radius r bisects C if $r \leqslant a$.
(ii) Let C_{1} and C_{2} be circles with centres at $(-d, 0)$ and $(d, 0)$ and radii a_{1} and a_{2}, respectively, where $d>a_{1}$ and $d>a_{2}$. Let D be a circle of radius r that bisects both C_{1} and C_{2}. Show that the x-coordinate of the centre of D is $\frac{a_{2}^{2}-a_{1}^{2}}{4 d}$.
Obtain an expression in terms of d, r, a_{1} and a_{2} for the y-coordinate of the centre of D, and deduce that r must satisfy

$$
16 r^{2} d^{2} \geqslant\left(4 d^{2}+\left(a_{2}-a_{1}\right)^{2}\right)\left(4 d^{2}+\left(a_{2}+a_{1}\right)^{2}\right)
$$

8

The diagram above shows two non-overlapping circles C_{1} and C_{2} of different sizes. The lines L and L^{\prime} are the two common tangents to C_{1} and C_{2} such that the two circles lie on the same side of each of the tangents. The lines L and L^{\prime} intersect at the point P which is called the focus of C_{1} and C_{2}.
(i) Let x_{1} and \mathbf{x}_{2} be the position vectors of the centres of C_{1} and C_{2}, respectively. Show that the position vector of P is

$$
\frac{r_{1} \mathbf{x}_{2}-r_{2} \mathbf{x}_{1}}{r_{1}-r_{2}}
$$

where r_{1} and r_{2} are the radii of C_{1} and C_{2}, respectively.
(ii) The circle C_{3} does not overlap either C_{1} or C_{2} and its radius, r_{3}, satisfies $r_{1} \neq r_{3} \neq r_{2}$. The focus of C_{1} and C_{3} is Q, and the focus of C_{2} and C_{3} is R. Show that P, Q and R lie on the same straight line.
(iii) Find a condition on r_{1}, r_{2} and r_{3} for Q to lie half-way between P and R.

Section B: Mechanics

9 An equilateral triangle $A B C$ is made of three light rods each of length a. It is free to rotate in a vertical plane about a horizontal axis through A. Particles of mass $3 m$ and $5 m$ are attached to B and C respectively. Initially, the system hangs in equilibrium with $B C$ below A.
(i) Show that, initially, the angle θ that $B C$ makes with the horizontal is given by $\sin \theta=\frac{1}{7}$.
(ii) The triangle receives an impulse that imparts a speed v to the particle B. Find the minimum speed v_{0} such that the system will perform complete rotations if $v>v_{0}$.

10 A particle of mass m is pulled along the floor of a room in a straight line by a light string which is pulled at constant speed V through a hole in the ceiling. The floor is smooth and horizontal, and the height of the room is h. Find, in terms of V and θ, the speed of the particle when the string makes an angle of θ with the vertical (and the particle is still in contact with the floor). Find also the acceleration, in terms of V, h and θ.
Find the tension in the string and hence show that the particle will leave the floor when

$$
\tan ^{4} \theta=\frac{V^{2}}{g h} .
$$

11 Three particles, A, B and C, each of mass m, lie on a smooth horizontal table. Particles A and C are attached to the two ends of a light inextensible string of length $2 a$ and particle B is attached to the midpoint of the string. Initially, A, B and C are at rest at points $(0, a),(0,0)$ and $(0,-a)$, respectively.
An impulse is delivered to B, imparting to it a speed u in the positive x direction. The string remains taut throughout the subsequent motion.

(i) At time t, the angle between the x-axis and the string joining A and B is θ, as shown in the diagram, and B is at $(x, 0)$. Write down the coordinates of A in terms of x, a and θ. Given that the velocity of B is $(v, 0)$, show that the velocity of A is $(\dot{x}+a \sin \theta \dot{\theta}, a \cos \theta \dot{\theta})$, where the dot denotes differentiation with respect to time.
(ii) Show that, before particles A and C first collide,

$$
3 \dot{x}+2 a \dot{\theta} \sin \theta=v \quad \text { and } \quad \dot{\theta}^{2}=\frac{v^{2}}{a^{2}\left(3-2 \sin ^{2} \theta\right)} .
$$

(iii) When A and C collide, the collision is elastic (no energy is lost). At what value of θ does the second collision between particles A and C occur? (You should justify your answer.)
(iv) When $v=0$, what are the possible values of θ ? Is $v=0$ whenever θ takes these values?

Section C: Probability and Statistics

12 Four players A, B, C and D play a coin-tossing game with a fair coin. Each player chooses a sequence of heads and tails, as follows:
Player A: HHT; Player B: THH; Player C: TTH; Player D: HTT.
The coin is then tossed until one of these sequences occurs, in which case the corresponding player is the winner.
(i) Show that, if only A and B play, then A has a probability of $\frac{1}{4}$ of winning.
(ii) If all four players play together, find the probabilities of each one winning.
(iii) Only B and C play. What is the probability of C winning if the first two tosses are TT? Let the probabilities of C winning if the first two tosses are HT, TH and HH be p, q and r, respectively. Show that $p=\frac{1}{2}+\frac{1}{2} q$.

Find the probability that C wins.

13 The maximum height X of flood water each year on a certain river is a random variable with probability density function f given by

$$
\mathrm{f}(x)= \begin{cases}\lambda \mathrm{e}^{-\lambda x} & \text { for } x \geqslant 0 \\ 0 & \text { otherwise }\end{cases}
$$

where λ is a positive constant.
It costs $k y$ pounds each year to prepare for flood water of height y or less, where k is a positive constant and $y \geqslant 0$. If $X \leqslant y$ no further costs are incurred but if $X>y$ the additional cost of flood damage is $a(X-y)$ pounds where a is a positive constant.
(i) Let C be the total cost of dealing with the floods in the year. Show that the expectation of C is given by

$$
\mathrm{E}(C)=k y+\frac{a}{\lambda} \mathrm{e}^{-\lambda y} .
$$

How should y be chosen in order to minimise $\mathrm{E}(C)$, in the different cases that arise according to the value of a / k ?
(ii) Find the variance of C, and show that the more that is spent on preparing for flood water in advance the smaller this variance.

