Section A: Pure Mathematics

1 (i) Let

$$
I_{n}=\int_{0}^{\infty} \frac{1}{\left(1+u^{2}\right)^{n}} \mathrm{~d} u
$$

where n is a positive integer. Show that

$$
I_{n}-I_{n+1}=\frac{1}{2 n} I_{n}
$$

and deduce that

$$
I_{n+1}=\frac{(2 n)!\pi}{2^{2 n+1}(n!)^{2}}
$$

(ii) Let

$$
J=\int_{0}^{\infty} \mathrm{f}\left(\left(x-x^{-1}\right)^{2}\right) \mathrm{d} x,
$$

where f is any function for which the integral exists. Show that

$$
J=\int_{0}^{\infty} x^{-2} \mathrm{f}\left(\left(x-x^{-1}\right)^{2}\right) \mathrm{d} x=\frac{1}{2} \int_{0}^{\infty}\left(1+x^{-2}\right) \mathrm{f}\left(\left(x-x^{-1}\right)^{2}\right) \mathrm{d} x=\int_{0}^{\infty} \mathrm{f}\left(u^{2}\right) \mathrm{d} u .
$$

(iii) Hence evaluate

$$
\int_{0}^{\infty} \frac{x^{2 n-2}}{\left(x^{4}-x^{2}+1\right)^{n}} \mathrm{~d} x
$$

where n is a positive integer.

2 If $s_{1}, s_{2}, s_{3}, \ldots$ and $t_{1}, t_{2}, t_{3}, \ldots$ are sequences of positive numbers, we write

$$
\left(s_{n}\right) \leqslant\left(t_{n}\right)
$$

to mean
"there exists a positive integer m such that $s_{n} \leqslant t_{n}$ whenever $n \geqslant m$ ".

Determine whether each of the following statements is true or false. In the case of a true statement, you should give a proof which includes an explicit determination of an appropriate m; in the case of a false statement, you should give a counterexample.
(i) $(1000 n) \leqslant\left(n^{2}\right)$.
(ii) If it is not the case that $\left(s_{n}\right) \leqslant\left(t_{n}\right)$, then it is the case that $\left(t_{n}\right) \leqslant\left(s_{n}\right)$.
(iii) If $\left(s_{n}\right) \leqslant\left(t_{n}\right)$ and $\left(t_{n}\right) \leqslant\left(u_{n}\right)$, then $\left(s_{n}\right) \leqslant\left(u_{n}\right)$.
(iv) $\left(n^{2}\right) \leqslant\left(2^{n}\right)$.

3 In this question, r and θ are polar coordinates with $r \geqslant 0$ and $-\pi<\theta \leqslant \pi$, and a and b are positive constants.
Let L be a fixed line and let A be a fixed point not lying on L. Then the locus of points that are a fixed distance (call it d) from L measured along lines through A is called a conchoid of Nicomedes.
(i) Show that if

$$
\begin{equation*}
|r-a \sec \theta|=b, \tag{*}
\end{equation*}
$$

where $a>b$, then $\sec \theta>0$. Show that all points with coordinates satisfying ($*$) lie on a certain conchoid of Nicomedes (you should identify L, d and A). Sketch the locus of these points.
(ii) In the case $a<b$, sketch the curve (including the loop for which $\sec \theta<0$) given by

$$
|r-a \sec \theta|=b
$$

Find the area of the loop in the case $a=1$ and $b=2$.
[Note: $\int \sec \theta \mathrm{d} \theta=\ln |\sec \theta+\tan \theta|+C$.]

4 (i) If a, b and c are all real, show that the equation

$$
\begin{equation*}
z^{3}+a z^{2}+b z+c=0 \tag{*}
\end{equation*}
$$

has at least one real root.
(ii) Let

$$
S_{1}=z_{1}+z_{2}+z_{3}, \quad S_{2}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}, \quad S_{3}=z_{1}^{3}+z_{2}^{3}+z_{3}^{3},
$$

where z_{1}, z_{2} and z_{3} are the roots of the equation (*). Express a and b in terms of S_{1} and S_{2}, and show that

$$
6 c=-S_{1}^{3}+3 S_{1} S_{2}-2 S_{3} .
$$

(iii) The six real numbers r_{k} and $\theta_{k}(k=1,2,3)$, where $r_{k}>0$ and $-\pi<\theta_{k}<\pi$, satisfy

$$
\sum_{k=1}^{3} r_{k} \sin \left(\theta_{k}\right)=0, \quad \sum_{k=1}^{3} r_{k}^{2} \sin \left(2 \theta_{k}\right)=0, \quad \sum_{k=1}^{3} r_{k}^{3} \sin \left(3 \theta_{k}\right)=0
$$

Show that $\theta_{k}=0$ for at least one value of k.
Show further that if $\theta_{1}=0$ then $\theta_{2}=-\theta_{3}$.

5 (i) In the following argument to show that $\sqrt{2}$ is irrational, give proofs appropriate for steps 3,5 and 6 .

1. Assume that $\sqrt{2}$ is rational.
2. Define the set S to be the set of positive integers with the following property: n is in S if and only if $n \sqrt{2}$ is an integer.
3. Show that the set S contains at least one positive integer.
4. Define the integer k to be the smallest positive integer in S.
5. Show that $(\sqrt{2}-1) k$ is in S.
6. Show that steps 4 and 5 are contradictory and hence that $\sqrt{2}$ is irrational.
(ii) Prove that $2^{\frac{1}{3}}$ is rational if and only if $2^{\frac{2}{3}}$ is rational.

Use an argument similar to that of part (i) to prove that $2^{\frac{1}{3}}$ and $2^{\frac{2}{3}}$ are irrational.
$6 \quad$ (i) Let w and z be complex numbers, and let $u=w+z$ and $v=w^{2}+z^{2}$. Prove that w and z are real if and only if u and v are real and $u^{2} \leqslant 2 v$.
(ii) The complex numbers u, w and z satisfy the equations

$$
\begin{aligned}
w+z-u & =0 \\
w^{2}+z^{2}-u^{2} & =-\frac{2}{3} \\
w^{3}+z^{3}-\lambda u & =-\lambda
\end{aligned}
$$

where λ is a positive real number. Show that for all values of λ except one (which you should find) there are three possible values of u, all real.

Are w and z necessarily real? Give a proof or counterexample.

7 An operator D is defined, for any function f, by

$$
\mathrm{Df}(x)=x \frac{\mathrm{df}(x)}{\mathrm{d} x}
$$

The notation D^{n} means that D is applied n times; for example

$$
\mathrm{D}^{2} \mathrm{f}(x)=x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x \frac{\mathrm{df}(x)}{\mathrm{d} x}\right) .
$$

Show that, for any constant $a, \mathrm{D}^{2} x^{a}=a^{2} x^{a}$.
(i) Show that if $\mathrm{P}(x)$ is a polynomial of degree r (where $r \geqslant 1$) then, for any positive integer $n, \mathrm{D}^{n} \mathrm{P}(x)$ is also a polynomial of degree r.
(ii) Show that if n and m are positive integers with $n<m$, then $\mathrm{D}^{n}(1-x)^{m}$ is divisible by $(1-x)^{m-n}$.
(iii) Deduce that, if m and n are positive integers with $n<m$, then

$$
\sum_{r=0}^{m}(-1)^{r}\binom{m}{r} r^{n}=0 .
$$

8 (i) Show that under the changes of variable $x=r \cos \theta$ and $y=r \sin \theta$, where r is a function of θ with $r>0$, the differential equation

$$
(y+x) \frac{\mathrm{d} y}{\mathrm{~d} x}=y-x
$$

becomes

$$
\frac{\mathrm{d} r}{\mathrm{~d} \theta}+r=0
$$

Sketch a solution in the $x-y$ plane.
(ii) Show that the solutions of

$$
\left(y+x-x\left(x^{2}+y^{2}\right)\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=y-x-y\left(x^{2}+y^{2}\right)
$$

can be written in the form

$$
r^{2}=\frac{1}{1+A \mathrm{e}^{2 \theta}}
$$

and sketch the different forms of solution that arise according to the value of A.

Section B: Mechanics

9 A particle P of mass m moves on a smooth fixed straight horizontal rail and is attached to a fixed peg Q by a light elastic string of natural length a and modulus λ. The peg Q is a distance a from the rail. Initially P is at rest with $P Q=a$.
An impulse imparts to P a speed v along the rail. Let x be the displacement at time t of P from its initial position. Obtain the equation

$$
\dot{x}^{2}=v^{2}-k^{2}\left(\sqrt{x^{2}+a^{2}}-a\right)^{2}
$$

where $k^{2}=\lambda /(m a), k>0$ and the dot denotes differentiation with respect to t.
Find, in terms of k, a and v, the greatest value, x_{0}, attained by x. Find also the acceleration of P at $x=x_{0}$.
Obtain, in the form of an integral, an expression for the period of the motion. Show that in the case $v \ll k a$ (that is, v is much less than $k a$), this is approximately

$$
\sqrt{\frac{32 a}{k v}} \int_{0}^{1} \frac{1}{\sqrt{1-u^{4}}} \mathrm{~d} u
$$

10 A light rod of length $2 a$ has a particle of mass m attached to each end and it moves in a vertical plane. The midpoint of the rod has coordinates (x, y), where the x-axis is horizontal (within the plane of motion) and y is the height above a horizontal table. Initially, the rod is vertical, and at time t later it is inclined at an angle θ to the vertical.
Show that the velocity of one particle can be written in the form

$$
\binom{\dot{x}+a \dot{\theta} \cos \theta}{\dot{y}-a \dot{\theta} \sin \theta}
$$

and that

$$
m\binom{\ddot{x}+a \ddot{\theta} \cos \theta-a \dot{\theta}^{2} \sin \theta}{\ddot{y}-a \ddot{\theta} \sin \theta-a \dot{\theta}^{2} \cos \theta}=-T\binom{\sin \theta}{\cos \theta}-m g\binom{0}{1}
$$

where the dots denote differentiation with respect to time t and T is the tension in the rod. Obtain the corresponding equations for the other particle.
Deduce that $\ddot{x}=0, \ddot{y}=-g$ and $\ddot{\theta}=0$.
Initially, the midpoint of the rod is a height h above the table, the velocity of the higher particle is $\binom{u}{v}$, and the velocity of the lower particle is $\binom{0}{v}$. Given that the two particles hit the table for the first time simultaneously, when the rod has rotated by $\frac{1}{2} \pi$, show that

$$
2 h u^{2}=\pi^{2} a^{2} g-2 \pi u v a .
$$

11 (i) A horizontal disc of radius r rotates about a vertical axis through its centre with angular speed ω. One end of a light rod is fixed by a smooth hinge to the edge of the disc so that it can rotate freely in a vertical plane through the centre of the disc. A particle P of mass m is attached to the rod at a distance d from the hinge. The rod makes a constant angle α with the upward vertical, as shown in the diagram, and $d \sin \alpha<r$.

By considering moments about the hinge for the (light) rod, show that the force exerted on the rod by P is parallel to the rod.

Show also that

$$
r \cot \alpha=a+d \cos \alpha,
$$

where $a=\frac{g}{\omega^{2}}$. State clearly the direction of the force exerted by the hinge on the rod, and find an expression for its magnitude in terms of m, g and α.
(ii) The disc and rod rotate as in part (i), but two particles (instead of P) are attached to the rod. The masses of the particles are m_{1} and m_{2} and they are attached to the rod at distances d_{1} and d_{2} from the hinge, respectively. The rod makes a constant angle β with the upward vertical and $d_{1} \sin \beta<d_{2} \sin \beta<r$. Show that β satisfies an equation of the form

$$
r \cot \beta=a+b \cos \beta,
$$

where b should be expressed in terms of d_{1}, d_{2}, m_{1} and m_{2}.

Section C: Probability and Statistics

12 A 6 -sided fair die has the numbers $1,2,3,4,5,6$ on its faces. The die is thrown n times, the outcome (the number on the top face) of each throw being independent of the outcome of any other throw. The random variable S_{n} is the sum of the outcomes.
(i) The random variable R_{n} is the remainder when S_{n} is divided by 6 . Write down the probability generating function, $\mathrm{G}(x)$, of R_{1} and show that the probability generating function of R_{2} is also $\mathrm{G}(x)$. Use a generating function to find the probability that S_{n} is divisible by 6 .
(ii) The random variable T_{n} is the remainder when S_{n} is divided by 5 . Write down the probability generating function, $\mathrm{G}_{1}(x)$, of T_{1} and show that $\mathrm{G}_{2}(x)$, the probability generating function of T_{2}, is given by

$$
\mathrm{G}_{2}(x)=\frac{1}{36}\left(x^{2}+7 y\right)
$$

where $y=1+x+x^{2}+x^{3}+x^{4}$.
Obtain the probability generating function of T_{n} and hence show that the probability that S_{n} is divisible by 5 is

$$
\frac{1}{5}\left(1-\frac{1}{6^{n}}\right)
$$

if n is not divisible by 5 . What is the corresponding probability if n is divisible by 5 ?

13 Each of the two independent random variables X and Y is uniformly distributed on the interval $[0,1]$.
(i) By considering the lines $x+y=$ constant in the $x-y$ plane, find the cumulative distribution function of $X+Y$.
(ii) Hence show that the probability density function f of $(X+Y)^{-1}$ is given by

$$
\mathrm{f}(t)= \begin{cases}2 t^{-2}-t^{-3} & \text { for } \frac{1}{2} \leqslant t \leqslant 1 \\ t^{-3} & \text { for } 1 \leqslant t<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Evaluate $\mathrm{E}\left(\frac{1}{X+Y}\right)$.
(iii) Find the cumulative distribution function of Y / X and use this result to find the probability density function of $\frac{X}{X+Y}$.
Write down $\mathrm{E}\left(\frac{X}{X+Y}\right)$ and verify your result by integration.

