Section A: Pure Mathematics

1 (i) For n = 1, 2, 3 and 4, the functions p_n and q_n are defined by

$$p_n(x) = (x+1)^{2n} - (2n+1)x(x^2+x+1)^{n-1}$$

and

$$q_n(x) = \frac{x^{2n+1}+1}{x+1}$$
 $(x \neq -1).$

Show that $p_n(x) \equiv q_n(x)$ (for $x \neq -1$) in the cases n = 1, n = 2 and n = 3. Show also that this does not hold in the case n = 4.

- (ii) Using results from part (i):
 - (a) express $\frac{300^3 + 1}{301}$ as the product of two factors (neither of which is 1);
 - (b) express $\frac{7^{49}+1}{7^7+1}$ as the product of two factors (neither of which is 1), each written in terms of various powers of 7 which you should not attempt to calculate explicitly.
- **2** Differentiate, with respect to x,

$$(ax^{2} + bx + c) \ln (x + \sqrt{1 + x^{2}}) + (dx + e)\sqrt{1 + x^{2}},$$

where a, b, c, d and e are constants. You should simplify your answer as far as possible. Hence integrate:

- (i) $\ln(x + \sqrt{1 + x^2});$
- (ii) $\sqrt{1+x^2};$
- (iii) $x \ln (x + \sqrt{1 + x^2})$.

3 In this question, $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x, so that (for example) $\lfloor 2.9 \rfloor = 2$, $\lfloor 2 \rfloor = 2$ and $\lfloor -1.5 \rfloor = -2$.

On separate diagrams draw the graphs, for $-\pi \leq x \leq \pi$, of:

(i) $y = \lfloor x \rfloor$; (ii) $y = \sin \lfloor x \rfloor$; (iii) $y = \lfloor \sin x \rfloor$; (iv) $y = \lfloor 2 \sin x \rfloor$.

In each case, you should indicate clearly the value of y at points where the graph is discontinuous.

- 4 (i) Differentiate $\frac{z}{(1+z^2)^{\frac{1}{2}}}$ with respect to z.
 - (ii) The signed curvature κ of the curve y = f(x) is defined by

$$\kappa = \frac{\mathbf{f}''(x)}{\left(1 + (\mathbf{f}'(x))^2\right)^{\frac{3}{2}}}.$$

Use this definition to determine all curves for which the signed curvature is a non-zero constant. For these curves, what is the geometrical significance of κ ?

 $\mathbf{5}$

(i)

The diagram shows three touching circles A, B and C, with a common tangent PQR. The radii of the circles are a, b and c, respectively.

Show that

$$\frac{1}{\sqrt{b}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{c}} \tag{(*)}$$

and deduce that

$$2\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2.$$
 (**)

(ii) Instead, let a, b and c be positive numbers, with b < c < a, which satisfy (**). Show that they also satisfy (*).

6 The sides *OA* and *CB* of the quadrilateral *OABC* are parallel. The point *X* lies on *OA*, between *O* and *A*. The position vectors of *A*, *B*, *C* and *X* relative to the origin *O* are **a**, **b**, **c** and **x**, respectively. Explain why **c** and **x** can be written in the form

$$\mathbf{c} = k\mathbf{a} + \mathbf{b}$$
 and $\mathbf{x} = m\mathbf{a}$,

where k and m are scalars, and state the range of values that each of k and m can take.

The lines OB and AC intersect at D, the lines XD and BC intersect at Y and the lines OY and AB intersect at Z. Show that the position vector of Z relative to O can be written as

$$\frac{\mathbf{b} + mk\mathbf{a}}{mk+1}$$

The lines DZ and OA intersect at T. Show that

$$OT \times OA = OX \times TA$$
 and $\frac{1}{OT} = \frac{1}{OX} + \frac{1}{OA}$,

where, for example, OT denotes the length of the line joining O and T.

- 7 The set S consists of all the positive integers that leave a remainder of 1 upon division by 4. The set T consists of all the positive integers that leave a remainder of 3 upon division by 4.
 - (i) Describe in words the sets $S \cup T$ and $S \cap T$.
 - (ii) Prove that the product of any two integers in S is also in S. Determine whether the product of any two integers in T is also in T.
 - (iii) Given an integer in T that is not a prime number, prove that at least one of its prime factors is in T.
 - (iv) For any set X of positive integers, an integer in X (other than 1) is said to be X-prime if it cannot be expressed as the product of two or more integers all in X (and all different from 1).
 - (a) Show that every integer in T is either T-prime or is the product of an odd number of T-prime integers.
 - (b) Find an example of an integer in S that can be expressed as the product of S-prime integers in two distinct ways. [Note: s_1s_2 and s_2s_1 are not counted as distinct ways of expressing the product of s_1 and s_2 .]

8 Given an infinite sequence of numbers u_0, u_1, u_2, \ldots , we define the generating function, f, for the sequence by

 $f(x) = u_0 + u_1 x + u_2 x^2 + u_3 x^3 + \cdots$

Issues of convergence can be ignored in this question.

(i) Using the binomial series, show that the sequence given by $u_n = n$ has generating function $x(1-x)^{-2}$, and find the sequence that has generating function $x(1-x)^{-3}$.

Hence, or otherwise, find the generating function for the sequence $u_n = n^2$. You should simplify your answer.

(ii) (a) The sequence u_0, u_1, u_2, \ldots is determined by $u_n = ku_{n-1}$ $(n \ge 1)$, where k is independent of n, and $u_0 = a$. By summing the identity $u_n x^n \equiv ku_{n-1}x^n$, or otherwise, show that the generating function, f, satisfies

$$\mathbf{f}(x) = a + kx\mathbf{f}(x) \,.$$

Write down an expression for f(x).

(b) The sequence u_0, u_1, u_2, \ldots is determined by $u_n = u_{n-1} + u_{n-2}$ $(n \ge 2)$ and $u_0 = 0, u_1 = 1$. Obtain the generating function.

Section B: Mechanics

9 A horizontal rail is fixed parallel to a vertical wall and at a distance d from the wall. A uniform rod AB of length 2a rests in equilibrium on the rail with the end A in contact with the wall. The rod lies in a vertical plane perpendicular to the wall. It is inclined at an angle θ to the vertical (where $0 < \theta < \frac{1}{2}\pi$) and $a \sin \theta < d$, as shown in the diagram.

The coefficient of friction between the rod and the wall is μ , and the coefficient of friction between the rod and the rail is λ .

Show that in limiting equilibrium, with the rod on the point of slipping at both the wall and the rail, the angle θ satisfies

$$d \operatorname{cosec}^2 \theta = a ((\lambda + \mu) \cos \theta + (1 - \lambda \mu) \sin \theta).$$

Derive the corresponding result if, instead, $a \sin \theta > d$.

10 Four particles A, B, C and D are initially at rest on a smooth horizontal table. They lie equally spaced a small distance apart, in the order ABCD, in a straight line. Their masses are λm , m, m and m, respectively, where $\lambda > 1$.

Particles A and D are simultaneously projected, both at speed u, so that they collide with B and C (respectively). In the following collision between B and C, particle B is brought to rest. The coefficient of restitution in each collision is e.

(i) Show that
$$e = \frac{\lambda - 1}{3\lambda + 1}$$
 and deduce that $e < \frac{1}{3}$.

(ii) Given also that C and D move towards each other with the same speed, find the value of λ and of e.

11 The point O is at the top of a vertical tower of height h which stands in the middle of a large horizontal plain. A projectile P is fired from O at a fixed speed u and at an angle α above the horizontal.

Show that the distance x from the base of the tower when P hits the plain satisfies

$$\frac{gx^2}{u^2} = h(1 + \cos 2\alpha) + x \sin 2\alpha \,.$$

Show that the greatest value of x as α varies occurs when $x = h \tan 2\alpha$ and find the corresponding value of $\cos 2\alpha$ in terms of g, h and u.

Show further that the greatest achievable distance between O and the landing point is $\frac{u^2}{q} + h$.

Section C: Probability and Statistics

- 12 (i) Alice tosses a fair coin twice and Bob tosses a fair coin three times. Calculate the probability that Bob gets more heads than Alice.
 - (ii) Alice tosses a fair coin three times and Bob tosses a fair coin four times. Calculate the probability that Bob gets more heads than Alice.
 - (iii) Let p_1 be the probability that Bob gets the same number of heads as Alice, and let p_2 be the probability that Bob gets more heads than Alice, when Alice and Bob each toss a fair coin n times.

Alice tosses a fair coin n times and Bob tosses a fair coin n + 1 times. Express the probability that Bob gets more heads than Alice in terms of p_1 and p_2 , and hence obtain a generalisation of the results of parts (i) and (ii).

- 13 An internet tester sends n e-mails simultaneously at time t = 0. Their arrival times at their destinations are independent random variables each having probability density function $\lambda e^{-\lambda t}$ $(0 \le t < \infty, \lambda > 0)$.
 - (i) The random variable T is the time of arrival of the e-mail that arrives first at its destination. Show that the probability density function of T is

$$n\lambda e^{-n\lambda t}$$
,

and find the expected value of T.

(ii) Write down the probability that the second e-mail to arrive at its destination arrives later than time t and hence derive the density function for the time of arrival of the second e-mail. Show that the expected time of arrival of the second e-mail is

$$\frac{1}{\lambda} \left(\frac{1}{n-1} + \frac{1}{n} \right).$$