Section A: Pure Mathematics

1 The curve C_{1} has parametric equations $x=t^{2}, y=t^{3}$, where $-\infty<t<\infty$. Let O denote the point $(0,0)$. The points P and Q on C_{1} are such that $\angle P O Q$ is a right angle. Show that the tangents to C_{1} at P and Q intersect on the curve C_{2} with equation $4 y^{2}=3 x-1$.
Determine whether C_{1} and C_{2} meet, and sketch the two curves on the same axes.

2 Use the factor theorem to show that $a+b-c$ is a factor of

$$
\begin{equation*}
(a+b+c)^{3}-6(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+8\left(a^{3}+b^{3}+c^{3}\right) . \tag{*}
\end{equation*}
$$

Hence factorise $(*)$ completely.
(i) Use the result above to solve the equation

$$
(x+1)^{3}-3(x+1)\left(2 x^{2}+5\right)+2\left(4 x^{3}+13\right)=0
$$

(ii) By setting $d+e=c$, or otherwise, show that $(a+b-d-e)$ is a factor of

$$
(a+b+d+e)^{3}-6(a+b+d+e)\left(a^{2}+b^{2}+d^{2}+e^{2}\right)+8\left(a^{3}+b^{3}+d^{3}+e^{3}\right)
$$

and factorise this expression completely.
Hence solve the equation

$$
(x+6)^{3}-6(x+6)\left(x^{2}+14\right)+8\left(x^{3}+36\right)=0
$$

3 For each non-negative integer n, the polynomial f_{n} is defined by

$$
\mathrm{f}_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} .
$$

(i) Show that $\mathrm{f}_{n}^{\prime}(x)=\mathrm{f}_{n-1}(x)($ for $n \geqslant 1)$.
(ii) Show that, if a is a real root of the equation

$$
\begin{equation*}
\mathrm{f}_{n}(x)=0 \tag{*}
\end{equation*}
$$

then $a<0$.
(iii) Let a and b be distinct real roots of $(*)$, for $n \geqslant 2$. Show that $\mathrm{f}_{n}^{\prime}(a) \mathrm{f}_{n}^{\prime}(b)>0$ and use a sketch to deduce that $\mathrm{f}_{n}(c)=0$ for some number c between a and b.

Deduce that $(*)$ has at most one real root. How many real roots does $(*)$ have if n is odd? How many real roots does $(*)$ have if n is even?

4 Let

$$
y=\frac{x^{2}+x \sin \theta+1}{x^{2}+x \cos \theta+1}
$$

(i) Given that x is real, show that

$$
(y \cos \theta-\sin \theta)^{2} \geqslant 4(y-1)^{2}
$$

Deduce that

$$
y^{2}+1 \geqslant 4(y-1)^{2}
$$

and hence that

$$
\frac{4-\sqrt{7}}{3} \leqslant y \leqslant \frac{4+\sqrt{7}}{3}
$$

(ii) In the case $y=\frac{4+\sqrt{7}}{3}$, show that

$$
\sqrt{y^{2}+1}=2(y-1)
$$

and find the corresponding values of x and $\tan \theta$.

5 In this question, the definition of $\binom{p}{q}$ is taken to be

$$
\binom{p}{q}= \begin{cases}\frac{p!}{q!(p-q)!} & \text { if } p \geqslant q \geqslant 0 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Write down the coefficient of x^{n} in the binomial expansion for $(1-x)^{-N}$, where N is a positive integer, and write down the expansion using the Σ summation notation.

By considering $(1-x)^{-1}(1-x)^{-N}$, where N is a positive integer, show that

$$
\sum_{j=0}^{n}\binom{N+j-1}{j}=\binom{N+n}{n} .
$$

(ii) Show that, for any positive integers m, n and r with $r \leqslant m+n$,

$$
\binom{m+n}{r}=\sum_{j=0}^{r}\binom{m}{j}\binom{n}{r-j} .
$$

(iii) Show that, for any positive integers m and N,

$$
\sum_{j=0}^{n}(-1)^{j}\binom{N+m}{n-j}\binom{m+j-1}{j}=\binom{N}{n} .
$$

6 This question concerns solutions of the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+k^{2} y^{2}=k^{2} \tag{*}
\end{equation*}
$$

where k is a positive integer.
For each value of k, let $y_{k}(x)$ be the solution of $(*)$ that satisfies $y_{k}(1)=1$; you may assume that there is only one such solution for each value of k.
(i) Write down the differential equation satisfied by $y_{1}(x)$ and verify that $y_{1}(x)=x$.
(ii) Write down the differential equation satisfied by $y_{2}(x)$ and verify that $y_{2}(x)=2 x^{2}-1$.
(iii) Let $z(x)=2\left(y_{n}(x)\right)^{2}-1$. Show that

$$
\left(1-x^{2}\right)\left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)^{2}+4 n^{2} z^{2}=4 n^{2}
$$

and hence obtain an expression for $y_{2 n}(x)$ in terms of $y_{n}(x)$.
(iv) Let $v(x)=y_{n}\left(y_{m}(x)\right)$. Show that $v(x)=y_{m n}(x)$.

7 Show that

$$
\begin{equation*}
\int_{0}^{a} \mathrm{f}(x) \mathrm{d} x=\int_{0}^{a} \mathrm{f}(a-x) \mathrm{d} x \tag{*}
\end{equation*}
$$

where f is any function for which the integrals exist.
(i) Use (*) to evaluate

$$
\int_{0}^{\frac{1}{2} \pi} \frac{\sin x}{\cos x+\sin x} d x
$$

(ii) Evaluate

$$
\int_{0}^{\frac{1}{4} \pi} \frac{\sin x}{\cos x+\sin x} d x
$$

(iii) Evaluate

$$
\int_{0}^{\frac{1}{4} \pi} \ln (1+\tan x) \mathrm{d} x
$$

(iv) Evaluate

$$
\int_{0}^{\frac{1}{4} \pi} \frac{x}{\cos x(\cos x+\sin x)} \mathrm{d} x
$$

8 Evaluate the integral

$$
\int_{m-\frac{1}{2}}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x \quad\left(m>\frac{1}{2}\right)
$$

Show by means of a sketch that

$$
\begin{equation*}
\sum_{r=m}^{n} \frac{1}{r^{2}} \approx \int_{m-\frac{1}{2}}^{n+\frac{1}{2}} \frac{1}{x^{2}} \mathrm{~d} x \tag{*}
\end{equation*}
$$

where m and n are positive integers with $m<n$.
(i) You are given that the infinite series $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ converges to a value denoted by E. Use (*) to obtain the following approximations for E :

$$
E \approx 2 ; \quad E \approx \frac{5}{3} ; \quad E \approx \frac{33}{20}
$$

(ii) Show that, when r is large, the error in approximating $\frac{1}{r^{2}}$ by $\int_{r-\frac{1}{2}}^{r+\frac{1}{2}} \frac{1}{x^{2}} \mathrm{~d} x$ is approximately $\frac{1}{4 r^{4}}$.

Given that $E \approx 1.645$, show that $\sum_{r=1}^{\infty} \frac{1}{r^{4}} \approx 1.08$.

Section B: Mechanics

$9 \quad$ A small bullet of mass m is fired into a block of wood of mass M which is at rest. The speed of the bullet on entering the block is u. Its trajectory within the block is a horizontal straight line and the resistance to the bullet's motion is R, which is constant.
(i) The block is fixed. The bullet travels a distance a inside the block before coming to rest. Find an expression for a in terms of m, u and R.
(ii) Instead, the block is free to move on a smooth horizontal table. The bullet travels a distance b inside the block before coming to rest relative to the block, at which time the block has moved a distance c on the table. Find expressions for b and c in terms of M, m and a.

10 A thin uniform wire is bent into the shape of an isosceles triangle $A B C$, where $A B$ and $A C$ are of equal length and the angle at A is 2θ. The triangle $A B C$ hangs on a small rough horizontal peg with the side $B C$ resting on the peg. The coefficient of friction between the wire and the peg is μ. The plane containing $A B C$ is vertical. Show that the triangle can rest in equilibrium with the peg in contact with any point on $B C$ provided

$$
\mu \geqslant 2 \tan \theta(1+\sin \theta) .
$$

11 (i) Two particles move on a smooth horizontal surface. The positions, in Cartesian coordinates, of the particles at time t are $(a+u t \cos \alpha, u t \sin \alpha)$ and $(v t \cos \beta, b+v t \sin \beta)$, where a, b, u and v are positive constants, α and β are constant acute angles, and $t \geqslant 0$.

Given that the two particles collide, show that

$$
u \sin (\theta+\alpha)=v \sin (\theta+\beta)
$$

where θ is the acute angle satisfying $\tan \theta=\frac{b}{a}$.
(ii) A gun is placed on the top of a vertical tower of height b which stands on horizontal ground. The gun fires a bullet with speed v and (acute) angle of elevation β. Simultaneously, a target is projected from a point on the ground a horizontal distance a from the foot of the tower. The target is projected with speed u and (acute) angle of elevation α, in a direction directly away from the tower.

Given that the target is hit before it reaches the ground, show that

$$
2 u \sin \alpha(u \sin \alpha-v \sin \beta)>b g .
$$

Explain, with reference to part (i), why the target can only be hit if $\alpha>\beta$.

Section C: Probability and Statistics

12 Starting with the result $\mathrm{P}(A \cup B)=\mathrm{P}(A)+P(B)-\mathrm{P}(A \cap B)$, prove that
$\mathrm{P}(A \cup B \cup C)=\mathrm{P}(A)+\mathrm{P}(B)+\mathrm{P}(C)-\mathrm{P}(A \cap B)-\mathrm{P}(B \cap C)-\mathrm{P}(C \cap A)+\mathrm{P}(A \cap B \cap C)$.
Write down, without proof, the corresponding result for four events A, B, C and D.
A pack of n cards, numbered $1,2, \ldots, n$, is shuffled and laid out in a row. The result of the shuffle is that each card is equally likely to be in any position in the row. Let E_{i} be the event that the card bearing the number i is in the i th position in the row. Write down the following probabilities:
(i) $\mathrm{P}\left(E_{i}\right)$;
(ii) $\mathrm{P}\left(E_{i} \cap E_{j}\right)$, where $i \neq j$;
(iii) $\mathrm{P}\left(E_{i} \cap E_{j} \cap E_{k}\right)$, where $i \neq j, j \neq k$ and $k \neq i$.

Hence show that the probability that at least one card is in the same position as the number it bears is

$$
1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n+1} \frac{1}{n!} .
$$

Find the probability that exactly one card is in the same position as the number it bears.

13 (i) The random variable X has a binomial distribution with parameters n and p, where $n=16$ and $p=\frac{1}{2}$. Show, using an approximation in terms of the standard normal density function $\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}}$, that

$$
\mathrm{P}(X=8) \approx \frac{1}{2 \sqrt{2 \pi}} .
$$

(ii) By considering a binomial distribution with parameters $2 n$ and $\frac{1}{2}$, show that

$$
(2 n)!\approx \frac{2^{2 n}(n!)^{2}}{\sqrt{n \pi}} .
$$

(iii) By considering a Poisson distribution with parameter n, show that

$$
n!\approx \sqrt{2 \pi n} \mathrm{e}^{-n} n^{n} .
$$

