Section A: Pure Mathematics

1 Let

$$
I_{n}=\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+2 a x+b\right)^{n}} \mathrm{~d} x
$$

where a and b are constants with $b>a^{2}$, and n is a positive integer.
(i) By using the substitution $x+a=\sqrt{b-a^{2}} \tan u$, or otherwise, show that

$$
I_{1}=\frac{\pi}{\sqrt{b-a^{2}}}
$$

(ii) Show that $2 n\left(b-a^{2}\right) I_{n+1}=(2 n-1) I_{n}$.
(iii) Hence prove by induction that

$$
I_{n}=\frac{\pi}{2^{2 n-2}\left(b-a^{2}\right)^{n-\frac{1}{2}}}\binom{2 n-2}{n-1}
$$

2 The distinct points $P\left(a p^{2}, 2 a p\right), Q\left(a q^{2}, 2 a q\right)$ and $R\left(a r^{2}, 2 a r\right)$ lie on the parabola $y^{2}=4 a x$, where $a>0$. The points are such that the normal to the parabola at Q and the normal to the parabola at R both pass through P.
(i) Show that $q^{2}+q p+2=0$.
(ii) Show that $Q R$ passes through a certain point that is independent of the choice of P.
(iii) Let T be the point of intersection of $O P$ and $Q R$, where O is the coordinate origin. Show that T lies on a line that is independent of the choice of P.

Show further that the distance from the x-axis to T is less than $\frac{a}{\sqrt{2}}$.

3 (i) Given that

$$
\int \frac{x^{3}-2}{(x+1)^{2}} \mathrm{e}^{x} \mathrm{~d} x=\frac{\mathrm{P}(x)}{\mathrm{Q}(x)} \mathrm{e}^{x}+\text { constant }
$$

where $\mathrm{P}(x)$ and $\mathrm{Q}(x)$ are polynomials, show that $\mathrm{Q}(x)$ has a factor of $x+1$.
Show also that the degree of $\mathrm{P}(x)$ is exactly one more than the degree of $\mathrm{Q}(x)$, and find $\mathrm{P}(x)$ in the case $\mathrm{Q}(x)=x+1$.
(ii) Show that there are no polynomials $\mathrm{P}(x)$ and $\mathrm{Q}(x)$ such that

$$
\int \frac{1}{x+1} \mathrm{e}^{x} \mathrm{~d} x=\frac{\mathrm{P}(x)}{\mathrm{Q}(x)} \mathrm{e}^{x}+\text { constant } .
$$

You need consider only the case when $\mathrm{P}(x)$ and $\mathrm{Q}(x)$ have no common factors.

4 (i) By considering $\frac{1}{1+x^{r}}-\frac{1}{1+x^{r+1}}$ for $|x| \neq 1$, simplify

$$
\sum_{r=1}^{N} \frac{x^{r}}{\left(1+x^{r}\right)\left(1+x^{r+1}\right)}
$$

Show that, for $|x|<1$,

$$
\sum_{r=1}^{\infty} \frac{x^{r}}{\left(1+x^{r}\right)\left(1+x^{r+1}\right)}=\frac{x}{1-x^{2}} .
$$

(ii) Deduce that

$$
\sum_{r=1}^{\infty} \operatorname{sech}(r y) \operatorname{sech}((r+1) y)=2 \mathrm{e}^{-y} \operatorname{cosech}(2 y)
$$

for $y>0$.
Hence simplify

$$
\sum_{r=-\infty}^{\infty} \operatorname{sech}(r y) \operatorname{sech}((r+1) y)
$$

for $y>0$.

5 (i) By considering the binomial expansion of $(1+x)^{2 m+1}$, prove that

$$
\binom{2 m+1}{m}<2^{2 m}
$$

for any positive integer m.
(ii) For any positive integers r and s with $r<s, P_{r, s}$ is defined as follows: $P_{r, s}$ is the product of all the prime numbers greater than r and less than or equal to s, if there are any such primes numbers; if there are no such primes numbers, then $P_{r, s}=1$.

For example, $P_{3,7}=35, P_{7,10}=1$ and $P_{14,18}=17$.
Show that, for any positive integer $m, P_{m+1,2 m+1}$ divides $\binom{2 m+1}{m}$, and deduce that

$$
P_{m+1,2 m+1}<2^{2 m} .
$$

(iii) Show that, if $P_{1, k}<4^{k}$ for $k=2,3, \ldots, 2 m$, then $P_{1,2 m+1}<4^{2 m+1}$.
(iv) Prove that $\mathrm{P}_{1, n}<4^{n}$ for $n \geqslant 2$.
$6 \quad$ Show, by finding R and γ, that $A \sinh x+B \cosh x$ can be written in the form $R \cosh (x+\gamma)$ if $B>A>0$. Determine the corresponding forms in the other cases that arise, for $A>0$, according to the value of B.
Two curves have equations $y=\operatorname{sech} x$ and $y=a \tanh x+b$, where $a>0$.
(i) In the case $b>a$, show that if the curves intersect then the x-coordinates of the points of intersection can be written in the form

$$
\pm \operatorname{arcosh}\left(\frac{1}{\sqrt{b^{2}-a^{2}}}\right)-\operatorname{artanh} \frac{a}{b}
$$

(ii) Find the corresponding result in the case $a>b>0$.
(iii) Find necessary and sufficient conditions on a and b for the curves to intersect at two distinct points.
(iv) Find necessary and sufficient conditions on a and b for the curves to touch and, given that they touch, express the y-coordinate of the point of contact in terms of a.

7 Let $\omega=\mathrm{e}^{2 \pi \mathrm{i} / n}$, where n is a positive integer. Show that, for any complex number z,

$$
(z-1)(z-\omega) \cdots\left(z-\omega^{n-1}\right)=z^{n}-1
$$

The points $X_{0}, X_{1}, \ldots, X_{n-1}$ lie on a circle with centre O and radius 1 , and are the vertices of a regular polygon.
(i) The point P is equidistant from X_{0} and X_{1}. Show that, if n is even,

$$
\left|P X_{0}\right| \times\left|P X_{1}\right| \times \cdots \times\left|P X_{n-1}\right|=|O P|^{n}+1
$$

where $\left|P X_{k}\right|$ denotes the distance from P to X_{k}.
Give the corresponding result when n is odd. (There are two cases to consider.)
(ii) Show that

$$
\left|X_{0} X_{1}\right| \times\left|X_{0} X_{2}\right| \times \cdots \times\left|X_{0} X_{n-1}\right|=n
$$

8 (i) The function f satisfies, for all x, the equation

$$
\mathrm{f}(x)+(1-x) \mathrm{f}(-x)=x^{2}
$$

Show that $\mathrm{f}(-x)+(1+x) \mathrm{f}(x)=x^{2}$. Hence find $\mathrm{f}(x)$ in terms of x. You should verify that your function satisfies the original equation.
(ii) The function K is defined, for $x \neq 1$, by

$$
\mathrm{K}(x)=\frac{x+1}{x-1}
$$

Show that, for $x \neq 1, \mathrm{~K}(\mathrm{~K}(x))=x$.
The function g satisfies the equation

$$
\mathrm{g}(x)+x \mathrm{~g}\left(\frac{x+1}{x-1}\right)=x \quad(x \neq 1)
$$

Show that, for $x \neq 1, \mathrm{~g}(x)=\frac{2 x}{x^{2}+1}$.
(iii) Find $\mathrm{h}(x)$, for $x \neq 0, x \neq 1$, given that

$$
\mathrm{h}(x)+\mathrm{h}\left(\frac{1}{1-x}\right)=1-x-\frac{1}{1-x} \quad(x \neq 0, \quad x \neq 1)
$$

Section B: Mechanics

9 Three pegs P, Q and R are fixed on a smooth horizontal table in such a way that they form the vertices of an equilateral triangle of side $2 a$. A particle X of mass m lies on the table. It is attached to the pegs by three springs, $P X, Q X$ and $R X$, each of modulus of elasticity λ and natural length l, where $l<\frac{2}{\sqrt{3}} a$. Initially the particle is in equilibrium. Show that the extension in each spring is $\frac{2}{\sqrt{3}} a-l$.
The particle is then pulled a small distance directly towards P and released. Show that the tension T in the spring $R X$ is given by

$$
T=\frac{\lambda}{l}\left(\sqrt{\frac{4 a^{2}}{3}+\frac{2 a x}{\sqrt{3}}+x^{2}}-l\right)
$$

where x is the displacement of X from its equilibrium position.
Show further that the particle performs approximate simple harmonic motion with period

$$
2 \pi \sqrt{\frac{4 m l a}{3(4 a-\sqrt{3} l) \lambda}} .
$$

10 A smooth plane is inclined at an angle α to the horizontal. A particle P of mass m is attached to a fixed point A above the plane by a light inextensible string of length a. The particle rests in equilibrium on the plane, and the string makes an angle β with the plane.

The particle is given a horizontal impulse parallel to the plane so that it has an initial speed of u. Show that the particle will not immediately leave the plane if $\operatorname{ag} \cos (\alpha+\beta)>u^{2} \tan \beta$.

Show further that a necessary condition for the particle to perform a complete circle whilst in contact with the plane is $6 \tan \alpha \tan \beta<1$.

11 A car of mass m travels along a straight horizontal road with its engine working at a constant rate P. The resistance to its motion is such that the acceleration of the car is zero when it is moving with speed $4 U$.
(i) Given that the resistance is proportional to the car's speed, show that the distance X_{1} travelled by the car while it accelerates from speed U to speed $2 U$, is given by

$$
\lambda X_{1}=2 \ln \frac{9}{5}-1,
$$

where $\lambda=P /\left(16 m U^{3}\right)$.
(ii) Given instead that the resistance is proportional to the square of the car's speed, show that the distance X_{2} travelled by the car while it accelerates from speed U to speed $2 U$ is given by

$$
\lambda X_{2}=\frac{4}{3} \ln \frac{9}{8} .
$$

(iii) Given that $3.17<\ln 24<3.18$ and $1.60<\ln 5<1.61$, determine which is the larger of X_{1} and X_{2}.

Section C: Probability and Statistics

12 Let X be a random variable with mean μ and standard deviation σ. Chebyshev's inequality, which you may use without proof, is

$$
\mathrm{P}(|X-\mu|>k \sigma) \leqslant \frac{1}{k^{2}}
$$

where k is any positive number.
(i) The probability of a biased coin landing heads up is 0.2 . It is thrown $100 n$ times, where n is an integer greater than 1 . Let α be the probability that the coin lands heads up N times, where $16 n \leqslant N \leqslant 24 n$.

Use Chebyshev's inequality to show that

$$
\alpha \geqslant 1-\frac{1}{n}
$$

(ii) Use Chebyshev's inequality to show that

$$
1+n+\frac{n^{2}}{2!}+\cdots+\frac{n^{2 n}}{(2 n)!} \geqslant\left(1-\frac{1}{n}\right) \mathrm{e}^{n}
$$

13 Given a random variable X with mean μ and standard deviation σ, we define the kurtosis, κ, of X by

$$
\kappa=\frac{\mathrm{E}\left((X-\mu)^{4}\right)}{\sigma^{4}}-3
$$

Show that the random variable $X-a$, where a is a constant, has the same kurtosis as X.
(i) Show by integration that a random variable which is Normally distributed with mean 0 has kurtosis 0 .
(ii) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be n independent, identically distributed, random variables with mean 0 , and let $T=\sum_{r=1}^{n} Y_{r}$. Show that

$$
\mathrm{E}\left(T^{4}\right)=\sum_{r=1}^{n} \mathrm{E}\left(Y_{r}^{4}\right)+6 \sum_{r=1}^{n-1} \sum_{s=r+1}^{n} \mathrm{E}\left(Y_{s}^{2}\right) \mathrm{E}\left(Y_{r}^{2}\right) .
$$

(iii) Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent, identically distributed, random variables each with kurtosis κ. Show that the kurtosis of their sum is $\frac{\kappa}{n}$.

