
Section A: Pure Mathematics

1 (i) Prove that, for any positive integers n and r,

1
n+rCr+1

=
r + 1

r

(

1
n+r−1Cr

− 1
n+rCr

)

.

Hence determine
∞
∑

n=1

1
n+rCr+1

,

and deduce that
∞
∑

n=2

1
n+2C3

=
1

2
.

(ii) Show that, for n > 3 ,

3!

n3
<

1
n+1C3

and
20

n+1C3

− 1
n+2C5

<
5!

n3
.

By summing these inequalities for n > 3 , show that

115

96
<

∞
∑

n=1

1

n3
<

116

96
.

Note: nCr is another notation for

(

n

r

)

.

2 The transformation R in the complex plane is a rotation (anticlockwise) by an angle θ about
the point represented by the complex number a. The transformation S in the complex
plane is a rotation (anticlockwise) by an angle φ about the point represented by the complex
number b.

(i) The point P is represented by the complex number z. Show that the image of P under
R is represented by

eiθz + a(1− eiθ) .

(ii) Show that the transformation SR (equivalent to R followed by S) is a rotation about
the point represented by c, where

c sin 1

2
(θ + φ) = a eiφ/2 sin 1

2
θ + b e−iθ/2 sin 1

2
φ ,

provided θ + φ 6= 2nπ for any integer n.

What is the transformation SR if θ + φ = 2π?

(iii) Under what circumstances is RS = SR?



3 Let α, β, γ and δ be the roots of the quartic equation

x4 + px3 + qx2 + rx+ s = 0 .

You are given that, for any such equation, αβ + γδ , αγ + βδ and αδ + βγ satisfy a cubic
equation of the form

y3 +Ay2 + (pr − 4s)y + (4qs− p2s− r2) = 0 .

Determine A .

Now consider the quartic equation given by p = 0 , q = 3 , r = −6 and s = 10 .

(i) Find the value of αβ + γδ, given that it is the largest root of the corresponding cubic
equation.

(ii) Hence, using the values of q and s, find the value of (α+β)(γ+ δ) and the value of αβ
given that αβ > γδ .

(iii) Using these results, and the values of p and r, solve the quartic equation.

4 For any function f satisfying f(x) > 0, we define the geometric mean, F, by

F(y) = e

1

y

∫ y

0
ln f(x) dx

(y > 0) .

(i) The function f satisfies f(x) > 0 and a is a positive number with a 6= 1. Prove that

F(y) = a

1

y

∫ y

0
log

a
f(x) dx

.

(ii) The functions f and g satisfy f(x) > 0 and g(x) > 0, and the function h is defined
by h(x) = f(x)g(x). Their geometric means are F, G and H, respectively. Show that
H(y) = F(y)G(y) .

(iii) Prove that, for any positive number b, the geometric mean of bx is
√
by .

(iv) Prove that, if f(x) > 0 and the geometric mean of f(x) is
√

f(y) , then f(x) = bx for
some positive number b.



5 The point with cartesian coordinates (x, y) lies on a curve with polar equation r = f(θ) .

Find an expression for
dy

dx
in terms of f(θ), f ′(θ) and tan θ .

Two curves, with polar equations r = f(θ) and r = g(θ), meet at right angles. Show that
where they meet

f ′(θ)g′(θ) + f(θ)g(θ) = 0 .

The curve C has polar equation r = f(θ) and passes through the point given by r = 4,
θ = −1

2
π. For each positive value of a, the curve with polar equation r = a(1 + sin θ)

meets C at right angles. Find f(θ) .

Sketch on a single diagram the three curves with polar equations r = 1+sin θ , r = 4(1+sin θ)
and r = f(θ) .

6 In this question, you are not permitted to use any properties of trigonometric functions or

inverse trigonometric functions.

The function T is defined for x > 0 by

T(x) =

∫ x

0

1

1 + u2
du ,

and T∞ =

∫

∞

0

1

1 + u2
du (which has a finite value).

(i) By making an appropriate substitution in the integral for T(x), show that

T(x) = T∞ − T(x−1) .

(ii) Let v =
u+ a

1− au
, where a is a constant. Verify that, for u 6= a−1,

dv

du
=

1 + v2

1 + u2
.

Hence show that, for a > 0 and x <
1

a
,

T(x) = T

(

x+ a

1− ax

)

− T(a) .

Deduce that

T(x−1) = 2T∞ − T

(

x+ a

1− ax

)

− T(a−1)

and hence that, for b > 0 and y >
1

b
,

T(y) = 2T∞ − T

(

y + b

by − 1

)

− T(b) .

(iii) Use the above results to show that T(
√
3) = 2

3
T∞ and T(

√
2− 1) = 1

4
T∞ .



7 Show that the point T with coordinates
(

a(1− t2)

1 + t2
,

2bt

1 + t2

)

(∗)

(where a and b are non-zero) lies on the ellipse

x2

a2
+

y2

b2
= 1 .

(i) The line L is the tangent to the ellipse at T . The point (X,Y ) lies on L, and X2 6= a2.
Show that

(a+X)bt2 − 2aY t+ b(a−X) = 0 .

Deduce that if a2Y 2 > (a2 −X2)b2, then there are two distinct lines through (X,Y )
that are tangents to the ellipse. Interpret this result geometrically. Show, by means of
a sketch, that the result holds also if X2 = a2 .

(ii) The distinct points P and Q are given by (∗), with t = p and t = q, respectively. The
tangents to the ellipse at P and Q meet at the point with coordinates (X,Y ), where
X2 6= a2 . Show that

(a+X)pq = a−X

and find an expression for p+ q in terms of a, b, X and Y .

Given that the tangents meet the y-axis at points (0, y1) and (0, y2), where y1+y2 = 2b ,
show that

X2

a2
+

Y

b
= 1 .

8 Prove that, for any numbers a1, a2, . . . , and b1, b2, . . . , and for n > 1,

n
∑

m=1

am(bm+1 − bm) = an+1bn+1 − a1b1 −
n
∑

m=1

bm+1(am+1 − am) .

(i) By setting bm = sinmx, show that

n
∑

m=1

cos(m+ 1

2
)x = 1

2

(

sin(n+ 1)x− sinx
)

cosec 1

2
x .

Note: sinA− sinB = 2 cos
(A+B

2

)

sin
(A−B

2

)

.

(ii) Show that
n
∑

m=1

m sinmx =
(

p sin(n+ 1)x+ q sinnx
)

cosec2 1

2
x ,

where p and q are to be determined in terms of n.

Note: 2 sinA sinB = cos(A−B)− cos(A+B) ;

2 cosA sinB = sin(A+B)− sin(A−B) .



Section B: Mechanics

9 Two particles A and B of masses m and 2m, respectively, are connected by a light spring
of natural length a and modulus of elasticity λ. They are placed on a smooth horizontal
table with AB perpendicular to the edge of the table, and A is held on the edge of the table.
Initially the spring is at its natural length.

Particle A is released. At a time t later, particle A has dropped a distance y and particle B
has moved a distance x from its initial position (where x < a). Show that y + 2x = 1

2
gt2.

The value of λ is such that particle B reaches the edge of the table at a time T given by
T =

√

6a/g . By considering the total energy of the system (without solving any differential
equations), show that the speed of particle B at this time is

√

2ag/3 .

10 A uniform rod PQ of mass m and length 3a is freely hinged at P .

The rod is held horizontally and a particle of mass m is placed on top of the rod at a
distance ℓ from P , where ℓ < 2a. The coefficient of friction between the rod and the particle
is µ.

The rod is then released. Show that, while the particle does not slip along the rod,

(3a2 + ℓ2)θ̇2 = g(3a+ 2ℓ) sin θ ,

where θ is the angle through which the rod has turned, and the dot denotes the time deriva-
tive.

Hence, or otherwise, find an expression for θ̈ and show that the normal reaction of the rod
on the particle is non-zero when θ is acute.

Show further that, when the particle is on the point of slipping,

tan θ =
µa(2a− ℓ)

2(ℓ2 + aℓ+ a2)
.

What happens at the moment the rod is released if, instead, ℓ > 2a?



11 A railway truck, initially at rest, can move forwards without friction on a long straight
horizontal track. On the truck, n guns are mounted parallel to the track and facing back-
wards, where n > 1. Each of the guns is loaded with a single projectile of mass m. The mass
of the truck and guns (but not including the projectiles) is M .

When a gun is fired, the projectile leaves its muzzle horizontally with a speed v− V relative
to the ground, where V is the speed of the truck immediately before the gun is fired.

(i) All n guns are fired simultaneously. Find the speed, u, with which the truck moves,
and show that the kinetic energy, K, which is gained by the system (truck, guns and
projectiles) is given by

K = 1

2
nmv2

(

1 +
nm

M

)

.

(ii) Instead, the guns are fired one at a time. Let ur be the speed of the truck when r guns
have been fired, so that u0 = 0. Show that, for 1 6 r 6 n ,

ur − ur−1 =
mv

M + (n− r)m
(∗)

and hence that un < u .

(iii) Let Kr be the total kinetic energy of the system when r guns have been fired (one at
a time), so that K0 = 0. Using (∗), show that, for 1 6 r 6 n ,

Kr −Kr−1 =
1

2
mv2 + 1

2
mv(ur − ur−1)

and hence show that
Kn = 1

2
nmv2 + 1

2
mvun .

Deduce that Kn < K.



Section C: Probability and Statistics

12 The discrete random variables X and Y can each take the values 1, . . . , n (where n > 2).
Their joint probability distribution is given by

P(X = x, Y = y) = k(x+ y) ,

where k is a constant.

(i) Show that

P(X = x) =
n+ 1 + 2x

2n(n+ 1)
.

Hence determine whether X and Y are independent.

(ii) Show that the covariance of X and Y is negative.

13 The random variable X has mean µ and variance σ2, and the function V is defined, for
−∞ < x < ∞, by

V(x) = E
(

(X − x)2
)

.

Express V(x) in terms of x, µ and σ.

The random variable Y is defined by Y = V(X). Show that

E(Y ) = 2σ2. (∗)

Now suppose that X is uniformly distributed on the interval 0 6 x 6 1 . Find V(x) . Find
also the probability density function of Y and use it to verify that (∗) holds in this case.


