Section A: Pure Mathematics

1 Define $\cosh x$ and $\sinh x$ in terms of exponentials and prove, from your definitions, that

$$
\cosh ^{4} x-\sinh ^{4} x=\cosh 2 x
$$

and

$$
\cosh ^{4} x+\sinh ^{4} x=\frac{1}{4} \cosh 4 x+\frac{3}{4} .
$$

Find $a_{0}, a_{1}, \ldots, a_{n}$ in terms of n such that

$$
\cosh ^{n} x=a_{0}+a_{1} \cosh x+a_{2} \cosh 2 x+\cdots+a_{n} \cosh n x .
$$

Hence, or otherwise, find expressions for $\cosh ^{2 m} x-\sinh ^{2 m} x$ and $\cosh ^{2 m} x+\sinh ^{2 m} x$, in terms of $\cosh k x$, where $k=0, \ldots, 2 m$.

2 For all values of a and b, either solve the simultaneous equations

$$
\begin{aligned}
& x+y+a z=2 \\
& x+a y+z=2 \\
& 2 x+y+z=2 b
\end{aligned}
$$

or prove that they have no solution.

3 Find

$$
\int_{0}^{\theta} \frac{1}{1-a \cos x} \mathrm{~d} x
$$

where $0<\theta<\pi$ and $-1<a<1$.
Hence show that

$$
\int_{0}^{\frac{1}{2} \pi} \frac{1}{2-a \cos x} \mathrm{~d} x=\frac{2}{\sqrt{4-a^{2}}} \tan ^{-1} \sqrt{\frac{2+a}{2-a}}
$$

and also that

$$
\int_{0}^{\frac{3}{4} \pi} \frac{1}{\sqrt{2}+\cos x} \mathrm{~d} x=\frac{\pi}{2}
$$

4 Find the integers k satisfying the inequality $k \leqslant 2(k-2)$.
Given that N is a strictly positive integer consider the problem of finding strictly positive integers whose sum is N and whose product is as large as possible. Call this largest possible product $P(N)$. Show that $P(5)=2 \times 3, P(6)=3^{2}, P(7)=2^{2} \times 3, P(8)=2 \times 3^{2}$ and $P(9)=3^{3}$. Find $P(1000)$ explaining your reasoning carefully.

5 Show, using de Moivre's theorem, or otherwise, that

$$
\tan 7 \theta=\frac{t\left(t^{6}-21 t^{4}+35 t^{2}-7\right)}{7 t^{6}-35 t^{4}+21 t^{2}-1}
$$

where $t=\tan \theta$.
(i) By considering the equation $\tan 7 \theta=0$, or otherwise, obtain a cubic equation with integer coefficients whose roots are

$$
\tan ^{2}\left(\frac{\pi}{7}\right), \tan ^{2}\left(\frac{2 \pi}{7}\right) \text { and } \tan ^{2}\left(\frac{3 \pi}{7}\right)
$$

and deduce the value of

$$
\tan \left(\frac{\pi}{7}\right) \tan \left(\frac{2 \pi}{7}\right) \tan \left(\frac{3 \pi}{7}\right) .
$$

(ii) Find, without using a calculator, the value of

$$
\tan ^{2}\left(\frac{\pi}{14}\right)+\tan ^{2}\left(\frac{3 \pi}{14}\right)+\tan ^{2}\left(\frac{5 \pi}{14}\right) .
$$

6 (i) Let S be the set of matrices of the form

$$
\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right),
$$

where a is any real non-zero number. Show that S is closed under matrix multiplication and, further, that S is a group under matrix multiplication.
(ii) Let G be a set of $n \times n$ matrices which is a group under matrix multiplication, with identity element \mathbf{E}. By considering equations of the form $\mathbf{B C}=\mathbf{D}$ for suitable elements \mathbf{B}, \mathbf{C} and \mathbf{D} of G, show that if a given element \mathbf{A} of G is a singular matrix (i.e. $\operatorname{det} \mathbf{A}=0$), then all elements of G are singular. Give, with justification, an example of such a group of singular matrices in the case $n=3$.

7 (i) If $x+y+z=\alpha, x y+y z+z x=\beta$ and $x y z=\gamma$, find numbers A, B and C such that

$$
x^{3}+y^{3}+z^{3}=A \alpha^{3}+B \alpha \beta+C .
$$

Solve the equations

$$
\begin{aligned}
x+y+z & =1 \\
x^{2}+y^{2}+z^{2} & =3 \\
x^{3}+y^{3}+z^{3} & =4 .
\end{aligned}
$$

(ii) The area of a triangle whose sides are a, b and c is given by the formula

$$
\text { area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where s is the semi-perimeter $\frac{1}{2}(a+b+c)$. If a, b and c are the roots of the equation

$$
x^{3}-16 x^{2}+81 x-128=0,
$$

find the area of the triangle.

8 A transformation T of the real numbers is defined by

$$
y=T(x)=\frac{a x-b}{c x-d},
$$

where a, b, c, d are real numbers such that $a d \neq b c$. Find all numbers x such that $T(x)=x$. Show that the inverse operation, $x=T^{-1}(y)$ expressing x in terms of y is of the same form as T and find corresponding numbers $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$.
Let S_{r} denote the set of all real numbers excluding r. Show that, if $c \neq 0$, there is a value of r such that T is defined for all $x \in S_{r}$ and find the image $T\left(S_{r}\right)$. What is the corresponding result if $c=0$?

If T_{1}, given by numbers $a_{1}, b_{1}, c_{1}, d_{1}$, and T_{2}, given by numbers $a_{2}, b_{2}, c_{2}, d_{2}$ are two such transformations, show that their composition T_{3}, defined by $T_{3}(x)=T_{2}\left(T_{1}(x)\right)$, is of the same form.
Find necessary and sufficient conditions on the numbers a, b, c, d for T^{2}, the composition of T with itself, to be the identity. Hence, or otherwise, find transformations T_{1}, T_{2} and their composition T_{3} such that T_{1}^{2} and T_{2}^{2} are each the identity but T_{3}^{2} is not.

Section B: Mechanics

9 A particle of mass m is at rest on top of a smooth fixed sphere of radius a. Show that, if the particle is given a small displacement, it reaches the horizontal plane through the centre of the sphere at a distance

$$
a(5 \sqrt{5}+4 \sqrt{2} 3) / 27
$$

from the centre of the sphere.
[Air resistance should be neglected.]

10 Two rough solid circular cylinders, of equal radius and length and of uniform density, lie side by side on a rough plane inclined at an angle α to the horizontal, where $0<\alpha<\pi / 2$. Their axes are horizontal and they touch along their entire length. The weight of the upper cylinder is W_{1} and the coefficient of friction between it and the plane is μ_{1}. The corresponding qunatities for the lower cylinder are W_{2} and μ_{2} respectively and the coefficient of friction between the two cylinders is μ. Show that for equilibrium to be possible:
(i) $W_{1} \geqslant W_{2}$;
(ii) $\mu \geqslant \frac{W_{1}+W_{2}}{W_{1}-W_{2}}$;
(iii) $\mu_{1} \geqslant\left(\frac{2 W_{1} \cot \alpha}{W_{1}+W_{2}}-1\right)^{-1}$.

Find the similar inequality to (iii) for μ_{2}.

11 A smooth circular wire of radius a is held fixed in a vertical plane with light elastic strings of natural length a and modulus λ attached to the upper and lower extremities, A and C respectively, of the vertical diameter. The other ends of the two strings are attached to a small ring B which is free to slide on the wire. Show that, while both strings remain taut, the equation for the motion of the ring is

$$
2 m a \ddot{\theta}=\lambda(\cos \theta-\sin \theta)-m g \sin \theta,
$$

where θ is the angle $\angle C A B$.
Initially the system is at rest in equilibrium with $\sin \theta=\frac{3}{5}$. Deduce that $5 \lambda=24 \mathrm{mg}$.
The ring is now displaced slightly. Show that, in the ensuing motion, it will oscillate with period approximately

$$
10 \pi \sqrt{\frac{a}{91 g}}
$$

Section C: Probability and Statistics

12 It has been observed that Professor Ecks proves three types of theorems: 1, those that are correct and new; 2, those that are correct, but already known; 3, those that are false. It has also been observed that, if a certain of her theorems is of type i, then her next theorem is of type j with probability $p_{i j}$, where $p_{i j}$ is the entry in the i th row and j th column of the following array:

$$
\left(\begin{array}{lll}
0.3 & 0.3 & 0.4 \\
0.2 & 0.4 & 0.4 \\
0.1 & 0.3 & 0.6
\end{array}\right) .
$$

Let $a_{i}, i=1,2,3$, be the probability that a given theorem is of type i, and let b_{j} be the consequent probability that the next theorem is of type j.
(i) Explain why $b_{j}=a_{1} p_{1 j}+a_{2} p_{2 j}+a_{3} p_{3 j}$.
(ii) Find values of a_{1}, a_{2} and a_{3} such that $b_{i}=a_{i}$ for $i=1,2,3$.
(iii) For these values of the a_{i} find the probabilities $q_{i j}$ that, if a particular theorem is of type j, then the preceding theorem was of type i.

13 Let X be a random variable which takes only the finite number of different possible real values $x_{1}, x_{2}, \ldots, x_{n}$. Define the expectation $\mathrm{E}(X)$ and the variance $\operatorname{var}(X)$ of X. Show that, if a and b are real numbers, then $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$ and express $\operatorname{var}(a X+b)$ similarly in terms of $\operatorname{var}(X)$.
Let λ be a positive real number. By considering the contribution to $\operatorname{var}(X)$ of those x_{i} for which $\left|x_{i}-\mathrm{E}(X)\right| \geqslant \lambda$, or otherwise, show that

$$
\mathrm{P}(|X-\mathrm{E}(X)| \geqslant \lambda) \leqslant \frac{\operatorname{var}(X)}{\lambda^{2}} .
$$

Let k be a real number satisfying $k \geqslant \lambda$. If $\left|x_{i}-\mathrm{E}(X)\right| \leqslant k$ for all i, show that

$$
\mathrm{P}(|X-\mathrm{E}(X)| \geqslant \lambda) \geqslant \frac{\operatorname{var}(X)-\lambda^{2}}{k^{2}-\lambda^{2}} .
$$

14 Whenever I go cycling I start with my bike in good working order. However if all is well at time t, the probability that I get a puncture in the small interval $(t, t+\delta t)$ is $\alpha \delta t$. How many punctures can I expect to get on a journey during which my total cycling time is T ?
When I get a puncture I stop immediately to repair it and the probability that, if I am repairing it at time t, the repair will be completed in time $(t, t+\delta t)$ is $\beta \delta t$. If $p(t)$ is the probability that I am repairing a puncture at time t, write down an equation relating $p(t)$ to $p(t+\delta t)$, and derive from this a differential equation relating $p^{\prime}(t)$ and $p(t)$. Show that

$$
p(t)=\frac{\alpha}{\alpha+\beta}\left(1-\mathrm{e}^{-(\alpha+\beta) t}\right)
$$

satisfies this differential equation with the appropriate initial condition.
Find an expression, involving α, β and T, for the time expected to be spent mending punctures during a journey of total time T. Hence, or otherwise, show that, the fraction of the journey expected to be spent mending punctures is given approximately by

$$
\frac{\alpha T}{2} \quad \text { if }(\alpha+\beta) T \text { is small, }
$$

and by

$$
\frac{\alpha}{\alpha+\beta} \quad \text { if }(\alpha+\beta) T \text { is large. }
$$

